Add libpgfutils from the Digikam codebase.

master
Sander Vocke 6 years ago
parent 640247c7a1
commit cc87de8088
  1. 2
      offline/pgfutils/.gitignore
  2. 26
      offline/pgfutils/CMakeLists.txt
  3. 1
      offline/pgfutils/README
  4. 341
      offline/pgfutils/libpgf/BitStream.h
  5. 1055
      offline/pgfutils/libpgf/Decoder.cpp
  6. 218
      offline/pgfutils/libpgf/Decoder.h
  7. 830
      offline/pgfutils/libpgf/Encoder.cpp
  8. 235
      offline/pgfutils/libpgf/Encoder.h
  9. 2732
      offline/pgfutils/libpgf/PGFimage.cpp
  10. 581
      offline/pgfutils/libpgf/PGFimage.h
  11. 631
      offline/pgfutils/libpgf/PGFplatform.h
  12. 274
      offline/pgfutils/libpgf/PGFstream.cpp
  13. 193
      offline/pgfutils/libpgf/PGFstream.h
  14. 290
      offline/pgfutils/libpgf/PGFtypes.h
  15. 114
      offline/pgfutils/libpgf/README
  16. 388
      offline/pgfutils/libpgf/Subband.cpp
  17. 180
      offline/pgfutils/libpgf/Subband.h
  18. 570
      offline/pgfutils/libpgf/WaveletTransform.cpp
  19. 163
      offline/pgfutils/libpgf/WaveletTransform.h
  20. 471
      offline/pgfutils/pgfutils.cpp
  21. 75
      offline/pgfutils/pgfutils.h

@ -0,0 +1,2 @@
build*
CMakeLists.txt.user

@ -0,0 +1,26 @@
#
# Copyright (c) 2010-2019 by Gilles Caulier, <caulier dot gilles at gmail dot com>
# Copyright (c) 2015 by Veaceslav Munteanu, <veaceslav dot munteanu90 at gmail dot com>
#
# Redistribution and use is allowed according to the terms of the BSD license.
# For details see the accompanying COPYING-CMAKE-SCRIPTS file.
cmake_minimum_required(VERSION 3.1.0)
set(CMAKE_CXX_STANDARD 14)
project(pgfutils)
find_package (Qt5 COMPONENTS Core Gui REQUIRED)
set(libpgfutils_SRCS
pgfutils.cpp
libpgf/Decoder.cpp
libpgf/Encoder.cpp
libpgf/PGFimage.cpp
libpgf/PGFstream.cpp
libpgf/Subband.cpp
libpgf/WaveletTransform.cpp
)
add_library(pgfutils ${libpgfutils_SRCS})
target_link_libraries(pgfutils Qt5::Core Qt5::Gui)
target_include_directories(pgfutils PUBLIC libpgf)

@ -0,0 +1 @@
ADAPTED FROM DIGIKAM pgfutils @ 33d0457

@ -0,0 +1,341 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $
* $Revision: 229 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file Bitstream.h
/// @brief PGF bit-stream operations
/// @author C. Stamm
#ifndef PGF_BITSTREAM_H
#define PGF_BITSTREAM_H
#include "PGFtypes.h"
//////////////////////////////////////////////////////////////////////
// constants
//static const WordWidth = 32;
//static const WordWidthLog = 5;
static const UINT32 Filled = 0xFFFFFFFF;
/// @brief Make 64 bit unsigned integer from two 32 bit unsigned integers
#define MAKEU64(a, b) ((UINT64) (((UINT32) (a)) | ((UINT64) ((UINT32) (b))) << 32))
/*
static UINT8 lMask[] = {
0x00, // 00000000
0x80, // 10000000
0xc0, // 11000000
0xe0, // 11100000
0xf0, // 11110000
0xf8, // 11111000
0xfc, // 11111100
0xfe, // 11111110
0xff, // 11111111
};
*/
// these procedures have to be inlined because of performance reasons
//////////////////////////////////////////////////////////////////////
/// Set one bit of a bit stream to 1
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
inline void SetBit(UINT32* stream, UINT32 pos) {
stream[pos >> WordWidthLog] |= (1 << (pos%WordWidth));
}
//////////////////////////////////////////////////////////////////////
/// Set one bit of a bit stream to 0
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
inline void ClearBit(UINT32* stream, UINT32 pos) {
stream[pos >> WordWidthLog] &= ~(1 << (pos%WordWidth));
}
//////////////////////////////////////////////////////////////////////
/// Return one bit of a bit stream
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @return bit at position pos of bit stream stream
inline bool GetBit(UINT32* stream, UINT32 pos) {
return (stream[pos >> WordWidthLog] & (1 << (pos%WordWidth))) > 0;
}
//////////////////////////////////////////////////////////////////////
/// Compare k-bit binary representation of stream at position pos with val
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @param k Number of bits to compare
/// @param val Value to compare with
/// @return true if equal
inline bool CompareBitBlock(UINT32* stream, UINT32 pos, UINT32 k, UINT32 val) {
const UINT32 iLoInt = pos >> WordWidthLog;
const UINT32 iHiInt = (pos + k - 1) >> WordWidthLog;
ASSERT(iLoInt <= iHiInt);
const UINT32 mask = (Filled >> (WordWidth - k));
if (iLoInt == iHiInt) {
// fits into one integer
val &= mask;
val <<= (pos%WordWidth);
return (stream[iLoInt] & val) == val;
} else {
// must be splitted over integer boundary
UINT64 v1 = MAKEU64(stream[iLoInt], stream[iHiInt]);
UINT64 v2 = UINT64(val & mask) << (pos%WordWidth);
return (v1 & v2) == v2;
}
}
//////////////////////////////////////////////////////////////////////
/// Store k-bit binary representation of val in stream at position pos
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @param val Value to store in stream at position pos
/// @param k Number of bits of integer representation of val
inline void SetValueBlock(UINT32* stream, UINT32 pos, UINT32 val, UINT32 k) {
const UINT32 offset = pos%WordWidth;
const UINT32 iLoInt = pos >> WordWidthLog;
const UINT32 iHiInt = (pos + k - 1) >> WordWidthLog;
ASSERT(iLoInt <= iHiInt);
const UINT32 loMask = Filled << offset;
const UINT32 hiMask = Filled >> (WordWidth - 1 - ((pos + k - 1)%WordWidth));
if (iLoInt == iHiInt) {
// fits into one integer
stream[iLoInt] &= ~(loMask & hiMask); // clear bits
stream[iLoInt] |= val << offset; // write value
} else {
// must be splitted over integer boundary
stream[iLoInt] &= ~loMask; // clear bits
stream[iLoInt] |= val << offset; // write lower part of value
stream[iHiInt] &= ~hiMask; // clear bits
stream[iHiInt] |= val >> (WordWidth - offset); // write higher part of value
}
}
//////////////////////////////////////////////////////////////////////
/// Read k-bit number from stream at position pos
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @param k Number of bits to read: 1 <= k <= 32
inline UINT32 GetValueBlock(UINT32* stream, UINT32 pos, UINT32 k) {
UINT32 count, hiCount;
const UINT32 iLoInt = pos >> WordWidthLog; // integer of first bit
const UINT32 iHiInt = (pos + k - 1) >> WordWidthLog; // integer of last bit
const UINT32 loMask = Filled << (pos%WordWidth);
const UINT32 hiMask = Filled >> (WordWidth - 1 - ((pos + k - 1)%WordWidth));
if (iLoInt == iHiInt) {
// inside integer boundary
count = stream[iLoInt] & (loMask & hiMask);
count >>= pos%WordWidth;
} else {
// overlapping integer boundary
count = stream[iLoInt] & loMask;
count >>= pos%WordWidth;
hiCount = stream[iHiInt] & hiMask;
hiCount <<= WordWidth - (pos%WordWidth);
count |= hiCount;
}
return count;
}
//////////////////////////////////////////////////////////////////////
/// Clear block of size at least len at position pos in stream
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @param len Number of bits set to 0
inline void ClearBitBlock(UINT32* stream, UINT32 pos, UINT32 len) {
ASSERT(len > 0);
const UINT32 iFirstInt = pos >> WordWidthLog;
const UINT32 iLastInt = (pos + len - 1) >> WordWidthLog;
const UINT32 startMask = Filled << (pos%WordWidth);
// const UINT32 endMask=Filled>>(WordWidth-1-((pos+len-1)%WordWidth));
if (iFirstInt == iLastInt) {
stream[iFirstInt] &= ~(startMask /*& endMask*/);
} else {
stream[iFirstInt] &= ~startMask;
for (UINT32 i = iFirstInt + 1; i <= iLastInt; i++) { // changed <=
stream[i] = 0;
}
//stream[iLastInt] &= ~endMask;
}
}
//////////////////////////////////////////////////////////////////////
/// Set block of size at least len at position pos in stream
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @param len Number of bits set to 1
inline void SetBitBlock(UINT32* stream, UINT32 pos, UINT32 len) {
ASSERT(len > 0);
const UINT32 iFirstInt = pos >> WordWidthLog;
const UINT32 iLastInt = (pos + len - 1) >> WordWidthLog;
const UINT32 startMask = Filled << (pos%WordWidth);
// const UINT32 endMask=Filled>>(WordWidth-1-((pos+len-1)%WordWidth));
if (iFirstInt == iLastInt) {
stream[iFirstInt] |= (startMask /*& endMask*/);
} else {
stream[iFirstInt] |= startMask;
for (UINT32 i = iFirstInt + 1; i <= iLastInt; i++) { // changed <=
stream[i] = Filled;
}
//stream[iLastInt] &= ~endMask;
}
}
//////////////////////////////////////////////////////////////////////
/// Returns the distance to the next 1 in stream at position pos.
/// If no 1 is found within len bits, then len is returned.
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @param len size of search area (in bits)
/// return The distance to the next 1 in stream at position pos
inline UINT32 SeekBitRange(UINT32* stream, UINT32 pos, UINT32 len) {
UINT32 count = 0;
UINT32 testMask = 1 << (pos%WordWidth);
UINT32* word = stream + (pos >> WordWidthLog);
while (((*word & testMask) == 0) && (count < len)) {
count++;
testMask <<= 1;
if (!testMask) {
word++; testMask = 1;
// fast steps if all bits in a word are zero
while ((count + WordWidth <= len) && (*word == 0)) {
word++;
count += WordWidth;
}
}
}
return count;
}
//////////////////////////////////////////////////////////////////////
/// Returns the distance to the next 0 in stream at position pos.
/// If no 0 is found within len bits, then len is returned.
/// @param stream A bit stream stored in array of unsigned integers
/// @param pos A valid zero-based position in the bit stream
/// @param len size of search area (in bits)
/// return The distance to the next 0 in stream at position pos
inline UINT32 SeekBit1Range(UINT32* stream, UINT32 pos, UINT32 len) {
UINT32 count = 0;
UINT32 testMask = 1 << (pos%WordWidth);
UINT32* word = stream + (pos >> WordWidthLog);
while (((*word & testMask) != 0) && (count < len)) {
count++;
testMask <<= 1;
if (!testMask) {
word++; testMask = 1;
// fast steps if all bits in a word are one
while ((count + WordWidth <= len) && (*word == Filled)) {
word++;
count += WordWidth;
}
}
}
return count;
}
/*
//////////////////////////////////////////////////////////////////////
/// BitCopy: copies k bits from source to destination
/// Note: only 8 bits are copied at a time, if speed is an issue, a more
/// complicated but faster 64 bit algorithm should be used.
inline void BitCopy(const UINT8 *sStream, UINT32 sPos, UINT8 *dStream, UINT32 dPos, UINT32 k) {
ASSERT(k > 0);
div_t divS = div(sPos, 8);
div_t divD = div(dPos, 8);
UINT32 sOff = divS.rem;
UINT32 dOff = divD.rem;
INT32 tmp = div(dPos + k - 1, 8).quot;
const UINT8 *sAddr = sStream + divS.quot;
UINT8 *dAddrS = dStream + divD.quot;
UINT8 *dAddrE = dStream + tmp;
UINT8 eMask;
UINT8 destSB = *dAddrS;
UINT8 destEB = *dAddrE;
UINT8 *dAddr;
UINT8 prec;
INT32 shiftl, shiftr;
if (dOff > sOff) {
prec = 0;
shiftr = dOff - sOff;
shiftl = 8 - dOff + sOff;
} else {
prec = *sAddr << (sOff - dOff);
shiftr = 8 - sOff + dOff;
shiftl = sOff - dOff;
sAddr++;
}
for (dAddr = dAddrS; dAddr < dAddrE; dAddr++, sAddr++) {
*dAddr = prec | (*sAddr >> shiftr);
prec = *sAddr << shiftl;
}
if ((sPos + k)%8 == 0) {
*dAddr = prec;
} else {
*dAddr = prec | (*sAddr >> shiftr);
}
eMask = lMask[dOff];
*dAddrS = (destSB & eMask) | (*dAddrS & (~eMask));
INT32 mind = (dPos + k) % 8;
eMask = (mind) ? lMask[mind] : lMask[8];
*dAddrE = (destEB & (~eMask)) | (*dAddrE & eMask);
}
*/
//////////////////////////////////////////////////////////////////////
/// Compute bit position of the next 32-bit word
/// @param pos current bit stream position
/// @return bit position of next 32-bit word
inline UINT32 AlignWordPos(UINT32 pos) {
// return ((pos + WordWidth - 1) >> WordWidthLog) << WordWidthLog;
return DWWIDTHBITS(pos);
}
//////////////////////////////////////////////////////////////////////
/// Compute number of the 32-bit words
/// @param pos Current bit stream position
/// @return Number of 32-bit words
inline UINT32 NumberOfWords(UINT32 pos) {
return (pos + WordWidth - 1) >> WordWidthLog;
}
#endif //PGF_BITSTREAM_H

File diff suppressed because it is too large Load Diff

@ -0,0 +1,218 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $
* $Revision: 229 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file Decoder.h
/// @brief PGF decoder class
/// @author C. Stamm, R. Spuler
#ifndef PGF_DECODER_H
#define PGF_DECODER_H
#include "PGFstream.h"
#include "BitStream.h"
#include "Subband.h"
#include "WaveletTransform.h"
/////////////////////////////////////////////////////////////////////
// Constants
#define BufferLen (BufferSize/WordWidth) ///< number of words per buffer
#define CodeBufferLen BufferSize ///< number of words in code buffer (CodeBufferLen > BufferLen)
/////////////////////////////////////////////////////////////////////
/// PGF decoder class.
/// @author C. Stamm, R. Spuler
/// @brief PGF decoder
class CDecoder {
//////////////////////////////////////////////////////////////////////
/// PGF decoder macro block class.
/// @author C. Stamm, I. Bauersachs
/// @brief A macro block is a decoding unit of fixed size (uncoded)
class CMacroBlock {
public:
//////////////////////////////////////////////////////////////////////
/// Constructor: Initializes new macro block.
CMacroBlock()
: m_header(0) // makes sure that IsCompletelyRead() returns true for an empty macro block
#ifdef _MSC_VER
#pragma warning( suppress : 4351 )
#endif
, m_value()
, m_codeBuffer()
, m_valuePos(0)
, m_sigFlagVector()
{
}
//////////////////////////////////////////////////////////////////////
/// Returns true if this macro block has been completely read.
/// @return true if current value position is at block end
bool IsCompletelyRead() const { return m_valuePos >= m_header.rbh.bufferSize; }
//////////////////////////////////////////////////////////////////////
/// Decodes already read input data into this macro block.
/// Several macro blocks can be decoded in parallel.
/// Call CDecoder::ReadMacroBlock before this method.
void BitplaneDecode();
ROIBlockHeader m_header; ///< block header
DataT m_value[BufferSize]; ///< output buffer of values with index m_valuePos
UINT32 m_codeBuffer[CodeBufferLen]; ///< input buffer for encoded bitstream
UINT32 m_valuePos; ///< current position in m_value
private:
UINT32 ComposeBitplane(UINT32 bufferSize, DataT planeMask, UINT32* sigBits, UINT32* refBits, UINT32* signBits);
UINT32 ComposeBitplaneRLD(UINT32 bufferSize, DataT planeMask, UINT32 sigPos, UINT32* refBits);
UINT32 ComposeBitplaneRLD(UINT32 bufferSize, DataT planeMask, UINT32* sigBits, UINT32* refBits, UINT32 signPos);
void SetBitAtPos(UINT32 pos, DataT planeMask) { (m_value[pos] >= 0) ? m_value[pos] |= planeMask : m_value[pos] -= planeMask; }
void SetSign(UINT32 pos, bool sign) { m_value[pos] = -m_value[pos]*sign + m_value[pos]*(!sign); }
bool m_sigFlagVector[BufferSize+1]; // see paper from Malvar, Fast Progressive Wavelet Coder
};
public:
/////////////////////////////////////////////////////////////////////
/// Constructor: Read pre-header, header, and levelLength at current stream position.
/// It might throw an IOException.
/// @param stream A PGF stream
/// @param preHeader [out] A PGF pre-header
/// @param header [out] A PGF header
/// @param postHeader [out] A PGF post-header
/// @param levelLength The location of the levelLength array. The array is allocated in this method. The caller has to delete this array.
/// @param userDataPos The stream position of the user data (metadata)
/// @param useOMP If true, then the decoder will use multi-threading based on openMP
/// @param userDataPolicy Policy of user data (meta-data) handling while reading PGF headers.
CDecoder(CPGFStream* stream, PGFPreHeader& preHeader, PGFHeader& header,
PGFPostHeader& postHeader, UINT32*& levelLength, UINT64& userDataPos,
bool useOMP, UINT32 userDataPolicy); // throws IOException
/////////////////////////////////////////////////////////////////////
/// Destructor
~CDecoder();
/////////////////////////////////////////////////////////////////////
/// Unpartitions a rectangular region of a given subband.
/// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize.
/// Read wavelet coefficients from the output buffer of a macro block.
/// It might throw an IOException.
/// @param band A subband
/// @param quantParam Dequantization value
/// @param width The width of the rectangle
/// @param height The height of the rectangle
/// @param startPos The relative subband position of the top left corner of the rectangular region
/// @param pitch The number of bytes in row of the subband
void Partition(CSubband* band, int quantParam, int width, int height, int startPos, int pitch);
/////////////////////////////////////////////////////////////////////
/// Deccoding and dequantization of HL and LH subband (interleaved) using partitioning scheme.
/// Partitioning scheme: The plane is partitioned in squares of side length InterBlockSize.
/// It might throw an IOException.
/// @param wtChannel A wavelet transform channel containing the HL and HL band
/// @param level Wavelet transform level
/// @param quantParam Dequantization value
void DecodeInterleaved(CWaveletTransform* wtChannel, int level, int quantParam);
//////////////////////////////////////////////////////////////////////
/// Returns the length of all encoded headers in bytes.
/// @return The length of all encoded headers in bytes
UINT32 GetEncodedHeaderLength() const { return m_encodedHeaderLength; }
////////////////////////////////////////////////////////////////////
/// Resets stream position to beginning of PGF pre-header
void SetStreamPosToStart() { ASSERT(m_stream); m_stream->SetPos(FSFromStart, m_startPos); }
////////////////////////////////////////////////////////////////////
/// Resets stream position to beginning of data block
void SetStreamPosToData() { ASSERT(m_stream); m_stream->SetPos(FSFromStart, m_startPos + m_encodedHeaderLength); }
////////////////////////////////////////////////////////////////////
/// Skips a given number of bytes in the open stream.
/// It might throw an IOException.
void Skip(UINT64 offset);
/////////////////////////////////////////////////////////////////////
/// Dequantization of a single value at given position in subband.
/// It might throw an IOException.
/// @param band A subband
/// @param bandPos A valid position in subband band
/// @param quantParam The quantization parameter
void DequantizeValue(CSubband* band, UINT32 bandPos, int quantParam);
//////////////////////////////////////////////////////////////////////
/// Copies data from the open stream to a target buffer.
/// It might throw an IOException.
/// @param target The target buffer
/// @param len The number of bytes to read
/// @return The number of bytes copied to the target buffer
UINT32 ReadEncodedData(UINT8* target, UINT32 len) const;
/////////////////////////////////////////////////////////////////////
/// Reads next block(s) from stream and decodes them
/// It might throw an IOException.
void DecodeBuffer();
/////////////////////////////////////////////////////////////////////
/// @return Stream
CPGFStream* GetStream() { return m_stream; }
/////////////////////////////////////////////////////////////////////
/// Gets next macro block
/// It might throw an IOException.
void GetNextMacroBlock();
#ifdef __PGFROISUPPORT__
/////////////////////////////////////////////////////////////////////
/// Resets stream position to next tile.
/// Used with ROI encoding scheme only.
/// It might throw an IOException.
void SkipTileBuffer();
/////////////////////////////////////////////////////////////////////
/// Enables region of interest (ROI) status.
void SetROI() { m_roi = true; }
#endif
#ifdef TRACE
void DumpBuffer();
#endif
private:
void ReadMacroBlock(CMacroBlock* block); ///< throws IOException
CPGFStream *m_stream; ///< input PGF stream
UINT64 m_startPos; ///< stream position at the beginning of the PGF pre-header
UINT64 m_streamSizeEstimation; ///< estimation of stream size
UINT32 m_encodedHeaderLength; ///< stream offset from startPos to the beginning of the data part (highest level)
CMacroBlock **m_macroBlocks; ///< array of macroblocks
int m_currentBlockIndex; ///< index of current macro block
int m_macroBlockLen; ///< array length
int m_macroBlocksAvailable; ///< number of decoded macro blocks (including currently used macro block)
CMacroBlock *m_currentBlock; ///< current macro block (used by main thread)
#ifdef __PGFROISUPPORT__
bool m_roi; ///< true: ensures region of interest (ROI) decoding
#endif
};
#endif //PGF_DECODER_H

@ -0,0 +1,830 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2007-02-03 13:04:21 +0100 (Sa, 03 Feb 2007) $
* $Revision: 280 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file Encoder.cpp
/// @brief PGF encoder class implementation
/// @author C. Stamm, R. Spuler
#include "Encoder.h"
#ifdef TRACE
#include <stdio.h>
#endif
//////////////////////////////////////////////////////
// PGF: file structure
//
// PGFPreHeader PGFHeader [PGFPostHeader] LevelLengths Level_n-1 Level_n-2 ... Level_0
// PGFPostHeader ::= [ColorTable] [UserData]
// LevelLengths ::= UINT32[nLevels]
//////////////////////////////////////////////////////
// Encoding scheme
// input: wavelet coefficients stored in subbands
// output: binary file
//
// subband
// |
// m_value [BufferSize]
// | | |
// m_sign sigBits refBits [BufferSize, BufferLen, BufferLen]
// | | |
// m_codeBuffer (for each plane: RLcodeLength (16 bit), RLcoded sigBits + m_sign, refBits)
// |
// file (for each buffer: packedLength (16 bit), packed bits)
//
// Constants
#define CodeBufferBitLen (CodeBufferLen*WordWidth) ///< max number of bits in m_codeBuffer
#define MaxCodeLen ((1 << RLblockSizeLen) - 1) ///< max length of RL encoded block
//////////////////////////////////////////////////////
/// Write pre-header, header, postHeader, and levelLength.
/// It might throw an IOException.
/// @param stream A PGF stream
/// @param preHeader A already filled in PGF pre-header
/// @param header An already filled in PGF header
/// @param postHeader [in] An already filled in PGF post-header (containing color table, user data, ...)
/// @param userDataPos [out] File position of user data
/// @param useOMP If true, then the encoder will use multi-threading based on openMP
CEncoder::CEncoder(CPGFStream* stream, PGFPreHeader preHeader, PGFHeader header, const PGFPostHeader& postHeader, UINT64& userDataPos, bool useOMP)
: m_stream(stream)
, m_bufferStartPos(0)
, m_currLevelIndex(0)
, m_nLevels(header.nLevels)
, m_favorSpeed(false)
, m_forceWriting(false)
#ifdef __PGFROISUPPORT__
, m_roi(false)
#endif
{
ASSERT(m_stream);
int count;
m_lastMacroBlock = 0;
m_levelLength = nullptr;
// set number of threads
#ifdef LIBPGF_USE_OPENMP
m_macroBlockLen = omp_get_num_procs();
#else
m_macroBlockLen = 1;
#endif
if (useOMP && m_macroBlockLen > 1) {
#ifdef LIBPGF_USE_OPENMP
omp_set_num_threads(m_macroBlockLen);
#endif
// create macro block array
m_macroBlocks = new(std::nothrow) CMacroBlock*[m_macroBlockLen];
if (!m_macroBlocks) ReturnWithError(InsufficientMemory);
for (int i=0; i < m_macroBlockLen; i++) m_macroBlocks[i] = new CMacroBlock(this);
m_currentBlock = m_macroBlocks[m_lastMacroBlock++];
} else {
m_macroBlocks = 0;
m_macroBlockLen = 1;
m_currentBlock = new CMacroBlock(this);
}
// save file position
m_startPosition = m_stream->GetPos();
// write preHeader
preHeader.hSize = __VAL(preHeader.hSize);
count = PreHeaderSize;
m_stream->Write(&count, &preHeader);
// write file header
header.height = __VAL(header.height);
header.width = __VAL(header.width);
count = HeaderSize;
m_stream->Write(&count, &header);
// write postHeader
if (header.mode == ImageModeIndexedColor) {
// write color table
count = ColorTableSize;
m_stream->Write(&count, (void *)postHeader.clut);
}
// save user data file position
userDataPos = m_stream->GetPos();
if (postHeader.userDataLen) {
if (postHeader.userData) {
// write user data
count = postHeader.userDataLen;
m_stream->Write(&count, postHeader.userData);
} else {
m_stream->SetPos(FSFromCurrent, count);
}
}
// save level length file position
m_levelLengthPos = m_stream->GetPos();
}
//////////////////////////////////////////////////////
// Destructor
CEncoder::~CEncoder() {
if (m_macroBlocks) {
for (int i=0; i < m_macroBlockLen; i++) delete m_macroBlocks[i];
delete[] m_macroBlocks;
} else {
delete m_currentBlock;
}
}
/////////////////////////////////////////////////////////////////////
/// Increase post-header size and write new size into stream.
/// @param preHeader An already filled in PGF pre-header
/// It might throw an IOException.
void CEncoder::UpdatePostHeaderSize(PGFPreHeader preHeader) {
UINT64 curPos = m_stream->GetPos(); // end of user data
int count = PreHeaderSize;
// write preHeader
SetStreamPosToStart();
preHeader.hSize = __VAL(preHeader.hSize);
m_stream->Write(&count, &preHeader);
m_stream->SetPos(FSFromStart, curPos);
}
/////////////////////////////////////////////////////////////////////
/// Create level length data structure and write a place holder into stream.
/// It might throw an IOException.
/// @param levelLength A reference to an integer array, large enough to save the relative file positions of all PGF levels
/// @return number of bytes written into stream
UINT32 CEncoder::WriteLevelLength(UINT32*& levelLength) {
// renew levelLength
delete[] levelLength;
levelLength = new(std::nothrow) UINT32[m_nLevels];
if (!levelLength) ReturnWithError(InsufficientMemory);
for (UINT8 l = 0; l < m_nLevels; l++) levelLength[l] = 0;
m_levelLength = levelLength;
// save level length file position
m_levelLengthPos = m_stream->GetPos();
// write dummy levelLength
int count = m_nLevels*WordBytes;
m_stream->Write(&count, m_levelLength);
// save current file position
SetBufferStartPos();
return count;
}
//////////////////////////////////////////////////////
/// Write new levelLength into stream.
/// It might throw an IOException.
/// @return Written image bytes.
UINT32 CEncoder::UpdateLevelLength() {
UINT64 curPos = m_stream->GetPos(); // end of image
// set file pos to levelLength
m_stream->SetPos(FSFromStart, m_levelLengthPos);
if (m_levelLength) {
#ifdef PGF_USE_BIG_ENDIAN
UINT32 levelLength;
int count = WordBytes;
for (int i=0; i < m_currLevelIndex; i++) {
levelLength = __VAL(UINT32(m_levelLength[i]));
m_stream->Write(&count, &levelLength);
}
#else
int count = m_currLevelIndex*WordBytes;
m_stream->Write(&count, m_levelLength);
#endif //PGF_USE_BIG_ENDIAN
} else {
int count = m_currLevelIndex*WordBytes;
m_stream->SetPos(FSFromCurrent, count);
}
// begin of image
UINT32 retValue = UINT32(curPos - m_stream->GetPos());
// restore file position
m_stream->SetPos(FSFromStart, curPos);
return retValue;
}
/////////////////////////////////////////////////////////////////////
/// Partitions a rectangular region of a given subband.
/// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize.
/// Write wavelet coefficients from subband into the input buffer of a macro block.
/// It might throw an IOException.
/// @param band A subband
/// @param width The width of the rectangle
/// @param height The height of the rectangle
/// @param startPos The absolute subband position of the top left corner of the rectangular region
/// @param pitch The number of bytes in row of the subband
void CEncoder::Partition(CSubband* band, int width, int height, int startPos, int pitch) {
ASSERT(band);
const div_t hh = div(height, LinBlockSize);
const div_t ww = div(width, LinBlockSize);
const int ws = pitch - LinBlockSize;
const int wr = pitch - ww.rem;
int pos, base = startPos, base2;
// main height
for (int i=0; i < hh.quot; i++) {
// main width
base2 = base;
for (int j=0; j < ww.quot; j++) {
pos = base2;
for (int y=0; y < LinBlockSize; y++) {
for (int x=0; x < LinBlockSize; x++) {
WriteValue(band, pos);
pos++;
}
pos += ws;
}
base2 += LinBlockSize;
}
// rest of width
pos = base2;
for (int y=0; y < LinBlockSize; y++) {
for (int x=0; x < ww.rem; x++) {
WriteValue(band, pos);
pos++;
}
pos += wr;
base += pitch;
}
}
// main width
base2 = base;
for (int j=0; j < ww.quot; j++) {
// rest of height
pos = base2;
for (int y=0; y < hh.rem; y++) {
for (int x=0; x < LinBlockSize; x++) {
WriteValue(band, pos);
pos++;
}
pos += ws;
}
base2 += LinBlockSize;
}
// rest of height
pos = base2;
for (int y=0; y < hh.rem; y++) {
// rest of width
for (int x=0; x < ww.rem; x++) {
WriteValue(band, pos);
pos++;
}
pos += wr;
}
}
//////////////////////////////////////////////////////
/// Pad buffer with zeros and encode buffer.
/// It might throw an IOException.
void CEncoder::Flush() {
if (m_currentBlock->m_valuePos > 0) {
// pad buffer with zeros
memset(&(m_currentBlock->m_value[m_currentBlock->m_valuePos]), 0, (BufferSize - m_currentBlock->m_valuePos)*DataTSize);
m_currentBlock->m_valuePos = BufferSize;
// encode buffer
m_forceWriting = true; // makes sure that the following EncodeBuffer is really written into the stream
EncodeBuffer(ROIBlockHeader(m_currentBlock->m_valuePos, true));
}
}
/////////////////////////////////////////////////////////////////////
// Stores band value from given position bandPos into buffer m_value at position m_valuePos
// If buffer is full encode it to file
// It might throw an IOException.
void CEncoder::WriteValue(CSubband* band, int bandPos) {
if (m_currentBlock->m_valuePos == BufferSize) {
EncodeBuffer(ROIBlockHeader(BufferSize, false));
}
DataT val = m_currentBlock->m_value[m_currentBlock->m_valuePos++] = band->GetData(bandPos);
UINT32 v = abs(val);
if (v > m_currentBlock->m_maxAbsValue) m_currentBlock->m_maxAbsValue = v;
}
/////////////////////////////////////////////////////////////////////
// Encode buffer and write data into stream.
// h contains buffer size and flag indicating end of tile.
// Encoding scheme: <wordLen>(16 bits) [ ROI ] data
// ROI ::= <bufferSize>(15 bits) <eofTile>(1 bit)
// It might throw an IOException.
void CEncoder::EncodeBuffer(ROIBlockHeader h) {
ASSERT(m_currentBlock);
#ifdef __PGFROISUPPORT__
ASSERT(m_roi && h.rbh.bufferSize <= BufferSize || h.rbh.bufferSize == BufferSize);
#else
ASSERT(h.rbh.bufferSize == BufferSize);
#endif
m_currentBlock->m_header = h;
// macro block management
if (m_macroBlockLen == 1) {
m_currentBlock->BitplaneEncode();
WriteMacroBlock(m_currentBlock);
} else {
// save last level index
int lastLevelIndex = m_currentBlock->m_lastLevelIndex;
if (m_forceWriting || m_lastMacroBlock == m_macroBlockLen) {
// encode macro blocks
/*
volatile OSError error = NoError;
#ifdef LIBPGF_USE_OPENMP
#pragma omp parallel for ordered default(shared)
#endif
for (int i=0; i < m_lastMacroBlock; i++) {
if (error == NoError) {
m_macroBlocks[i]->BitplaneEncode();
#ifdef LIBPGF_USE_OPENMP
#pragma omp ordered
#endif
{
try {
WriteMacroBlock(m_macroBlocks[i]);
} catch (IOException& e) {
error = e.error;
}
delete m_macroBlocks[i]; m_macroBlocks[i] = 0;
}
}
}
if (error != NoError) ReturnWithError(error);
*/
#ifdef LIBPGF_USE_OPENMP
#pragma omp parallel for default(shared) //no declared exceptions in next block
#endif
for (int i=0; i < m_lastMacroBlock; i++) {
m_macroBlocks[i]->BitplaneEncode();
}
for (int i=0; i < m_lastMacroBlock; i++) {
WriteMacroBlock(m_macroBlocks[i]);
}
// prepare for next round
m_forceWriting = false;
m_lastMacroBlock = 0;
}
// re-initialize macro block
m_currentBlock = m_macroBlocks[m_lastMacroBlock++];
m_currentBlock->Init(lastLevelIndex);
}
}
/////////////////////////////////////////////////////////////////////
// Write encoded macro block into stream.
// It might throw an IOException.
void CEncoder::WriteMacroBlock(CMacroBlock* block) {
ASSERT(block);
#ifdef __PGFROISUPPORT__
ROIBlockHeader h = block->m_header;
#endif
UINT16 wordLen = UINT16(NumberOfWords(block->m_codePos)); ASSERT(wordLen <= CodeBufferLen);
int count = sizeof(UINT16);
#ifdef TRACE
//UINT32 filePos = (UINT32)m_stream->GetPos();
//printf("EncodeBuffer: %d\n", filePos);
#endif
#ifdef PGF_USE_BIG_ENDIAN
// write wordLen
UINT16 wl = __VAL(wordLen);
m_stream->Write(&count, &wl); ASSERT(count == sizeof(UINT16));
#ifdef __PGFROISUPPORT__
// write ROIBlockHeader
if (m_roi) {
count = sizeof(ROIBlockHeader);
h.val = __VAL(h.val);
m_stream->Write(&count, &h.val); ASSERT(count == sizeof(ROIBlockHeader));
}
#endif // __PGFROISUPPORT__
// convert data
for (int i=0; i < wordLen; i++) {
block->m_codeBuffer[i] = __VAL(block->m_codeBuffer[i]);
}
#else
// write wordLen
m_stream->Write(&count, &wordLen); ASSERT(count == sizeof(UINT16));
#ifdef __PGFROISUPPORT__
// write ROIBlockHeader
if (m_roi) {
count = sizeof(ROIBlockHeader);
m_stream->Write(&count, &h.val); ASSERT(count == sizeof(ROIBlockHeader));
}
#endif // __PGFROISUPPORT__
#endif // PGF_USE_BIG_ENDIAN
// write encoded data into stream
count = wordLen*WordBytes;
m_stream->Write(&count, block->m_codeBuffer);
// store levelLength
if (m_levelLength) {
// store level length
// EncodeBuffer has been called after m_lastLevelIndex has been updated
ASSERT(m_currLevelIndex < m_nLevels);
m_levelLength[m_currLevelIndex] += (UINT32)ComputeBufferLength();
m_currLevelIndex = block->m_lastLevelIndex + 1;
}
// prepare for next buffer
SetBufferStartPos();
// reset values
block->m_valuePos = 0;
block->m_maxAbsValue = 0;
}
////////////////////////////////////////////////////////
// Encode buffer of given size using bit plane coding.
// A buffer contains bufferLen UINT32 values, thus, bufferSize bits per bit plane.
// Following coding scheme is used:
// Buffer ::= <nPlanes>(5 bits) foreach(plane i): Plane[i]
// Plane[i] ::= [ Sig1 | Sig2 ] [DWORD alignment] refBits
// Sig1 ::= 1 <codeLen>(15 bits) codedSigAndSignBits
// Sig2 ::= 0 <sigLen>(15 bits) [Sign1 | Sign2 ] [DWORD alignment] sigBits
// Sign1 ::= 1 <codeLen>(15 bits) codedSignBits
// Sign2 ::= 0 <signLen>(15 bits) [DWORD alignment] signBits
void CEncoder::CMacroBlock::BitplaneEncode() {
UINT8 nPlanes;
UINT32 sigLen, codeLen = 0, wordPos, refLen, signLen;
UINT32 sigBits[BufferLen] = { 0 };
UINT32 refBits[BufferLen] = { 0 };
UINT32 signBits[BufferLen] = { 0 };
UINT32 planeMask;
UINT32 bufferSize = m_header.rbh.bufferSize; ASSERT(bufferSize <= BufferSize);
bool useRL;
#ifdef TRACE
//printf("which thread: %d\n", omp_get_thread_num());
#endif
// clear significance vector
for (UINT32 k=0; k < bufferSize; k++) {
m_sigFlagVector[k] = false;
}
m_sigFlagVector[bufferSize] = true; // sentinel
// clear output buffer
for (UINT32 k=0; k < bufferSize; k++) {
m_codeBuffer[k] = 0;
}
m_codePos = 0;
// compute number of bit planes and split buffer into separate bit planes
nPlanes = NumberOfBitplanes();
// write number of bit planes to m_codeBuffer
// <nPlanes>
SetValueBlock(m_codeBuffer, 0, nPlanes, MaxBitPlanesLog);
m_codePos += MaxBitPlanesLog;
// loop through all bit planes
if (nPlanes == 0) nPlanes = MaxBitPlanes + 1;
planeMask = 1 << (nPlanes - 1);
for (int plane = nPlanes - 1; plane >= 0; plane--) {
// clear significant bitset
for (UINT32 k=0; k < BufferLen; k++) {
sigBits[k] = 0;
}
// split bitplane in significant bitset and refinement bitset
sigLen = DecomposeBitplane(bufferSize, planeMask, m_codePos + RLblockSizeLen + 1, sigBits, refBits, signBits, signLen, codeLen);
if (sigLen > 0 && codeLen <= MaxCodeLen && codeLen < AlignWordPos(sigLen) + AlignWordPos(signLen) + 2*RLblockSizeLen) {
// set RL code bit
// <1><codeLen>
SetBit(m_codeBuffer, m_codePos++);
// write length codeLen to m_codeBuffer
SetValueBlock(m_codeBuffer, m_codePos, codeLen, RLblockSizeLen);
m_codePos += RLblockSizeLen + codeLen;
} else {
#ifdef TRACE
//printf("new\n");
//for (UINT32 i=0; i < bufferSize; i++) {
// printf("%s", (GetBit(sigBits, i)) ? "1" : "_");
// if (i%120 == 119) printf("\n");
//}
//printf("\n");
#endif // TRACE
// run-length coding wasn't efficient enough
// we don't use RL coding for sigBits
// <0><sigLen>
ClearBit(m_codeBuffer, m_codePos++);
// write length sigLen to m_codeBuffer
ASSERT(sigLen <= MaxCodeLen);
SetValueBlock(m_codeBuffer, m_codePos, sigLen, RLblockSizeLen);
m_codePos += RLblockSizeLen;
if (m_encoder->m_favorSpeed || signLen == 0) {
useRL = false;
} else {
// overwrite m_codeBuffer
useRL = true;
// run-length encode m_sign and append them to the m_codeBuffer
codeLen = RLESigns(m_codePos + RLblockSizeLen + 1, signBits, signLen);
}
if (useRL && codeLen <= MaxCodeLen && codeLen < signLen) {
// RL encoding of m_sign was efficient
// <1><codeLen><codedSignBits>_
// write RL code bit
SetBit(m_codeBuffer, m_codePos++);
// write codeLen to m_codeBuffer
SetValueBlock(m_codeBuffer, m_codePos, codeLen, RLblockSizeLen);
// compute position of sigBits
wordPos = NumberOfWords(m_codePos + RLblockSizeLen + codeLen);
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
} else {
// RL encoding of signBits wasn't efficient
// <0><signLen>_<signBits>_
// clear RL code bit
ClearBit(m_codeBuffer, m_codePos++);
// write signLen to m_codeBuffer
ASSERT(signLen <= MaxCodeLen);
SetValueBlock(m_codeBuffer, m_codePos, signLen, RLblockSizeLen);
// write signBits to m_codeBuffer
wordPos = NumberOfWords(m_codePos + RLblockSizeLen);
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
codeLen = NumberOfWords(signLen);
for (UINT32 k=0; k < codeLen; k++) {
m_codeBuffer[wordPos++] = signBits[k];
}
}
// write sigBits
// <sigBits>_
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
refLen = NumberOfWords(sigLen);
for (UINT32 k=0; k < refLen; k++) {
m_codeBuffer[wordPos++] = sigBits[k];
}
m_codePos = wordPos << WordWidthLog;
}
// append refinement bitset (aligned to word boundary)
// _<refBits>
wordPos = NumberOfWords(m_codePos);
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
refLen = NumberOfWords(bufferSize - sigLen);
for (UINT32 k=0; k < refLen; k++) {
m_codeBuffer[wordPos++] = refBits[k];
}
m_codePos = wordPos << WordWidthLog;
planeMask >>= 1;
}
ASSERT(0 <= m_codePos && m_codePos <= CodeBufferBitLen);
}
//////////////////////////////////////////////////////////
// Split bitplane of length bufferSize into significant and refinement bitset
// returns length [bits] of significant bits
// input: bufferSize, planeMask, codePos
// output: sigBits, refBits, signBits, signLen [bits], codeLen [bits]
// RLE
// - Encode run of 2^k zeros by a single 0.
// - Encode run of count 0's followed by a 1 with codeword: 1<count>x
// - x is 0: if a positive sign is stored, otherwise 1
// - Store each bit in m_codeBuffer[codePos] and increment codePos.
UINT32 CEncoder::CMacroBlock::DecomposeBitplane(UINT32 bufferSize, UINT32 planeMask, UINT32 codePos, UINT32* sigBits, UINT32* refBits, UINT32* signBits, UINT32& signLen, UINT32& codeLen) {
ASSERT(sigBits);
ASSERT(refBits);
ASSERT(signBits);
ASSERT(codePos < CodeBufferBitLen);
UINT32 sigPos = 0;
UINT32 valuePos = 0, valueEnd;
UINT32 refPos = 0;
// set output value
signLen = 0;
// prepare RLE of Sigs and Signs
const UINT32 outStartPos = codePos;
UINT32 k = 3;
UINT32 runlen = 1 << k; // = 2^k
UINT32 count = 0;
while (valuePos < bufferSize) {
// search next 1 in m_sigFlagVector using searching with sentinel
valueEnd = valuePos;
while(!m_sigFlagVector[valueEnd]) { valueEnd++; }
// search 1's in m_value[plane][valuePos..valueEnd)
// these 1's are significant bits
while (valuePos < valueEnd) {
if (GetBitAtPos(valuePos, planeMask)) {
// RLE encoding
// encode run of count 0's followed by a 1
// with codeword: 1<count>(signBits[signPos])
SetBit(m_codeBuffer, codePos++);
if (k > 0) {
SetValueBlock(m_codeBuffer, codePos, count, k);
codePos += k;
// adapt k (half the zero run-length)
k--;
runlen >>= 1;
}
// copy and write sign bit
if (m_value[valuePos] < 0) {
SetBit(signBits, signLen++);
SetBit(m_codeBuffer, codePos++);
} else {
ClearBit(signBits, signLen++);
ClearBit(m_codeBuffer, codePos++);
}
// write a 1 to sigBits
SetBit(sigBits, sigPos++);
// update m_sigFlagVector
m_sigFlagVector[valuePos] = true;
// prepare for next run
count = 0;
} else {
// RLE encoding
count++;
if (count == runlen) {
// encode run of 2^k zeros by a single 0
ClearBit(m_codeBuffer, codePos++);
// adapt k (double the zero run-length)
if (k < WordWidth) {
k++;
runlen <<= 1;
}
// prepare for next run
count = 0;
}
// write 0 to sigBits
sigPos++;
}
valuePos++;
}
// refinement bit
if (valuePos < bufferSize) {
// write one refinement bit
if (GetBitAtPos(valuePos++, planeMask)) {
SetBit(refBits, refPos);
} else {
ClearBit(refBits, refPos);
}
refPos++;
}
}
// RLE encoding of the rest of the plane
// encode run of count 0's followed by a 1
// with codeword: 1<count>(signBits[signPos])
SetBit(m_codeBuffer, codePos++);
if (k > 0) {
SetValueBlock(m_codeBuffer, codePos, count, k);
codePos += k;
}
// write dmmy sign bit
SetBit(m_codeBuffer, codePos++);
// write word filler zeros
ASSERT(sigPos <= bufferSize);
ASSERT(refPos <= bufferSize);
ASSERT(signLen <= bufferSize);
ASSERT(valuePos == bufferSize);
ASSERT(codePos >= outStartPos && codePos < CodeBufferBitLen);
codeLen = codePos - outStartPos;
return sigPos;
}
///////////////////////////////////////////////////////
// Compute number of bit planes needed
UINT8 CEncoder::CMacroBlock::NumberOfBitplanes() {
UINT8 cnt = 0;
// determine number of bitplanes for max value
if (m_maxAbsValue > 0) {
while (m_maxAbsValue > 0) {
m_maxAbsValue >>= 1; cnt++;
}
if (cnt == MaxBitPlanes + 1) cnt = 0;
// end cs
ASSERT(cnt <= MaxBitPlanes);
ASSERT((cnt >> MaxBitPlanesLog) == 0);
return cnt;
} else {
return 1;
}
}
//////////////////////////////////////////////////////
// Adaptive Run-Length encoder for long sequences of ones.
// Returns length of output in bits.
// - Encode run of 2^k ones by a single 1.
// - Encode run of count 1's followed by a 0 with codeword: 0<count>.
// - Store each bit in m_codeBuffer[codePos] and increment codePos.
UINT32 CEncoder::CMacroBlock::RLESigns(UINT32 codePos, UINT32* signBits, UINT32 signLen) {
ASSERT(signBits);
ASSERT(0 <= codePos && codePos < CodeBufferBitLen);
ASSERT(0 < signLen && signLen <= BufferSize);
const UINT32 outStartPos = codePos;
UINT32 k = 0;
UINT32 runlen = 1 << k; // = 2^k
UINT32 count = 0;
UINT32 signPos = 0;
while (signPos < signLen) {
// search next 0 in signBits starting at position signPos
count = SeekBit1Range(signBits, signPos, __min(runlen, signLen - signPos));
// count 1's found
if (count == runlen) {
// encode run of 2^k ones by a single 1
signPos += count;
SetBit(m_codeBuffer, codePos++);
// adapt k (double the 1's run-length)
if (k < WordWidth) {
k++;
runlen <<= 1;
}
} else {
// encode run of count 1's followed by a 0
// with codeword: 0(count)
signPos += count + 1;
ClearBit(m_codeBuffer, codePos++);
if (k > 0) {
SetValueBlock(m_codeBuffer, codePos, count, k);
codePos += k;
}
// adapt k (half the 1's run-length)
if (k > 0) {
k--;
runlen >>= 1;
}
}
}
ASSERT(signPos == signLen || signPos == signLen + 1);
ASSERT(codePos >= outStartPos && codePos < CodeBufferBitLen);
return codePos - outStartPos;
}
//////////////////////////////////////////////////////
#ifdef TRACE
void CEncoder::DumpBuffer() const {
//printf("\nDump\n");
//for (UINT32 i=0; i < BufferSize; i++) {
// printf("%d", m_value[i]);
//}
//printf("\n");
}
#endif //TRACE

@ -0,0 +1,235 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $
* $Revision: 229 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file Encoder.h
/// @brief PGF encoder class
/// @author C. Stamm, R. Spuler
#ifndef PGF_ENCODER_H
#define PGF_ENCODER_H
#include "PGFstream.h"
#include "BitStream.h"
#include "Subband.h"
#include "WaveletTransform.h"
/////////////////////////////////////////////////////////////////////
// Constants
#define BufferLen (BufferSize/WordWidth) ///< number of words per buffer
#define CodeBufferLen BufferSize ///< number of words in code buffer (CodeBufferLen > BufferLen)
/////////////////////////////////////////////////////////////////////
/// PGF encoder class.
/// @author C. Stamm
/// @brief PGF encoder
class CEncoder {
//////////////////////////////////////////////////////////////////////
/// PGF encoder macro block class.
/// @author C. Stamm, I. Bauersachs
/// @brief A macro block is an encoding unit of fixed size (uncoded)
class CMacroBlock {
public:
//////////////////////////////////////////////////////////////////////
/// Constructor: Initializes new macro block.
/// @param encoder Pointer to outer class.
CMacroBlock(CEncoder *encoder)
#ifdef _MSC_VER
#pragma warning( suppress : 4351 )
#endif
: m_value()
, m_codeBuffer()
, m_header(0)
, m_encoder(encoder)
, m_sigFlagVector()
{
ASSERT(m_encoder);
Init(-1);
}
//////////////////////////////////////////////////////////////////////
/// Reinitialzes this macro block (allows reusage).
/// @param lastLevelIndex Level length directory index of last encoded level: [0, nLevels)
void Init(int lastLevelIndex) { // initialize for reusage
m_valuePos = 0;
m_maxAbsValue = 0;
m_codePos = 0;
m_lastLevelIndex = lastLevelIndex;
}
//////////////////////////////////////////////////////////////////////
/// Encodes this macro block into internal code buffer.
/// Several macro blocks can be encoded in parallel.
/// Call CEncoder::WriteMacroBlock after this method.
void BitplaneEncode();
DataT m_value[BufferSize]; ///< input buffer of values with index m_valuePos
UINT32 m_codeBuffer[CodeBufferLen]; ///< output buffer for encoded bitstream
ROIBlockHeader m_header; ///< block header
UINT32 m_valuePos; ///< current buffer position
UINT32 m_maxAbsValue; ///< maximum absolute coefficient in each buffer
UINT32 m_codePos; ///< current position in encoded bitstream
int m_lastLevelIndex; ///< index of last encoded level: [0, nLevels); used because a level-end can occur before a buffer is full
private:
UINT32 RLESigns(UINT32 codePos, UINT32* signBits, UINT32 signLen);
UINT32 DecomposeBitplane(UINT32 bufferSize, UINT32 planeMask, UINT32 codePos, UINT32* sigBits, UINT32* refBits, UINT32* signBits, UINT32& signLen, UINT32& codeLen);
UINT8 NumberOfBitplanes();
bool GetBitAtPos(UINT32 pos, UINT32 planeMask) const { return (abs(m_value[pos]) & planeMask) > 0; }
CEncoder *m_encoder; // encoder instance
bool m_sigFlagVector[BufferSize+1]; // see paper from Malvar, Fast Progressive Wavelet Coder
};
public:
/////////////////////////////////////////////////////////////////////
/// Write pre-header, header, post-Header, and levelLength.
/// It might throw an IOException.
/// @param stream A PGF stream
/// @param preHeader A already filled in PGF pre-header
/// @param header An already filled in PGF header
/// @param postHeader [in] An already filled in PGF post-header (containing color table, user data, ...)
/// @param userDataPos [out] File position of user data
/// @param useOMP If true, then the encoder will use multi-threading based on openMP
CEncoder(CPGFStream* stream, PGFPreHeader preHeader, PGFHeader header, const PGFPostHeader& postHeader,
UINT64& userDataPos, bool useOMP); // throws IOException
/////////////////////////////////////////////////////////////////////
/// Destructor
~CEncoder();
/////////////////////////////////////////////////////////////////////
/// Encoder favors speed over compression size
void FavorSpeedOverSize() { m_favorSpeed = true; }
/////////////////////////////////////////////////////////////////////
/// Pad buffer with zeros and encode buffer.
/// It might throw an IOException.
void Flush();
/////////////////////////////////////////////////////////////////////
/// Increase post-header size and write new size into stream.
/// @param preHeader An already filled in PGF pre-header
/// It might throw an IOException.
void UpdatePostHeaderSize(PGFPreHeader preHeader);
/////////////////////////////////////////////////////////////////////
/// Create level length data structure and write a place holder into stream.
/// It might throw an IOException.
/// @param levelLength A reference to an integer array, large enough to save the relative file positions of all PGF levels
/// @return number of bytes written into stream
UINT32 WriteLevelLength(UINT32*& levelLength);
/////////////////////////////////////////////////////////////////////
/// Write new levelLength into stream.
/// It might throw an IOException.
/// @return Written image bytes.
UINT32 UpdateLevelLength();
/////////////////////////////////////////////////////////////////////
/// Partitions a rectangular region of a given subband.
/// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize.
/// Write wavelet coefficients from subband into the input buffer of a macro block.
/// It might throw an IOException.
/// @param band A subband
/// @param width The width of the rectangle
/// @param height The height of the rectangle
/// @param startPos The absolute subband position of the top left corner of the rectangular region
/// @param pitch The number of bytes in row of the subband
void Partition(CSubband* band, int width, int height, int startPos, int pitch);
/////////////////////////////////////////////////////////////////////
/// Informs the encoder about the encoded level.
/// @param currentLevel encoded level [0, nLevels)
void SetEncodedLevel(int currentLevel) { ASSERT(currentLevel >= 0); m_currentBlock->m_lastLevelIndex = m_nLevels - currentLevel - 1; m_forceWriting = true; }
/////////////////////////////////////////////////////////////////////
/// Write a single value into subband at given position.
/// It might throw an IOException.
/// @param band A subband
/// @param bandPos A valid position in subband band
void WriteValue(CSubband* band, int bandPos);
/////////////////////////////////////////////////////////////////////
/// Compute stream length of header.
/// @return header length
INT64 ComputeHeaderLength() const { return m_levelLengthPos - m_startPosition; }
/////////////////////////////////////////////////////////////////////
/// Compute stream length of encoded buffer.
/// @return encoded buffer length
INT64 ComputeBufferLength() const { return m_stream->GetPos() - m_bufferStartPos; }
/////////////////////////////////////////////////////////////////////
/// Compute file offset between real and expected levelLength position.
/// @return file offset
INT64 ComputeOffset() const { return m_stream->GetPos() - m_levelLengthPos; }
////////////////////////////////////////////////////////////////////
/// Resets stream position to beginning of PGF pre-header
void SetStreamPosToStart() { ASSERT(m_stream); m_stream->SetPos(FSFromStart, m_startPosition); }
/////////////////////////////////////////////////////////////////////
/// Save current stream position as beginning of current level.
void SetBufferStartPos() { m_bufferStartPos = m_stream->GetPos(); }
#ifdef __PGFROISUPPORT__
/////////////////////////////////////////////////////////////////////
/// Encodes tile buffer and writes it into stream
/// It might throw an IOException.
void EncodeTileBuffer() { ASSERT(m_currentBlock && m_currentBlock->m_valuePos >= 0 && m_currentBlock->m_valuePos <= BufferSize); EncodeBuffer(ROIBlockHeader(m_currentBlock->m_valuePos, true)); }
/////////////////////////////////////////////////////////////////////
/// Enables region of interest (ROI) status.
void SetROI() { m_roi = true; }
#endif
#ifdef TRACE
void DumpBuffer() const;
#endif
private:
void EncodeBuffer(ROIBlockHeader h); // throws IOException
void WriteMacroBlock(CMacroBlock* block); // throws IOException
CPGFStream *m_stream; ///< output PMF stream
UINT64 m_startPosition; ///< stream position of PGF start (PreHeader)
UINT64 m_levelLengthPos; ///< stream position of Metadata
UINT64 m_bufferStartPos; ///< stream position of encoded buffer
CMacroBlock **m_macroBlocks; ///< array of macroblocks
int m_macroBlockLen; ///< array length
int m_lastMacroBlock; ///< array index of the last created macro block
CMacroBlock *m_currentBlock; ///< current macro block (used by main thread)
UINT32* m_levelLength; ///< temporary saves the level index
int m_currLevelIndex; ///< counts where (=index) to save next value
UINT8 m_nLevels; ///< number of levels
bool m_favorSpeed; ///< favor speed over size
bool m_forceWriting; ///< all macro blocks have to be written into the stream
#ifdef __PGFROISUPPORT__
bool m_roi; ///< true: ensures region of interest (ROI) encoding
#endif
};
#endif //PGF_ENCODER

File diff suppressed because it is too large Load Diff

@ -0,0 +1,581 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2007-02-03 13:04:21 +0100 (Sa, 03 Feb 2007) $
* $Revision: 280 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file PGFimage.h
/// @brief PGF image class
/// @author C. Stamm
#ifndef PGF_PGFIMAGE_H
#define PGF_PGFIMAGE_H
#include "PGFstream.h"
//////////////////////////////////////////////////////////////////////
// prototypes
class CDecoder;
class CEncoder;
class CWaveletTransform;
//////////////////////////////////////////////////////////////////////
/// PGF image class is the main class. You always need a PGF object
/// for encoding or decoding image data.
/// Decoding:
/// Open()
/// Read()
/// GetBitmap()
/// Encoding:
/// SetHeader()
/// ImportBitmap()
/// Write()
/// @author C. Stamm, R. Spuler
/// @brief PGF main class
class CPGFImage {
public:
//////////////////////////////////////////////////////////////////////
/// Standard constructor
CPGFImage();
//////////////////////////////////////////////////////////////////////
/// Destructor
virtual ~CPGFImage();
//////////////////////////////////////////////////////////////////////
// Destroy internal data structures. Object state after this is the same as after CPGFImage().
void Destroy();
//////////////////////////////////////////////////////////////////////
/// Open a PGF image at current stream position: read pre-header, header, and ckeck image type.
/// Precondition: The stream has been opened for reading.
/// It might throw an IOException.
/// @param stream A PGF stream
void Open(CPGFStream* stream);
//////////////////////////////////////////////////////////////////////
/// Returns true if the PGF has been opened for reading.
bool IsOpen() const { return m_decoder != nullptr; }
//////////////////////////////////////////////////////////////////////
/// Read and decode some levels of a PGF image at current stream position.
/// A PGF image is structered in levels, numbered between 0 and Levels() - 1.
/// Each level can be seen as a single image, containing the same content
/// as all other levels, but in a different size (width, height).
/// The image size at level i is double the size (width, height) of the image at level i+1.
/// The image at level 0 contains the original size.
/// Precondition: The PGF image has been opened with a call of Open(...).
/// It might throw an IOException.
/// @param level [0, nLevels) The image level of the resulting image in the internal image buffer.
/// @param cb A pointer to a callback procedure. The procedure is called after reading a single level. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
void Read(int level = 0, CallbackPtr cb = nullptr, void *data = nullptr);
#ifdef __PGFROISUPPORT__
//////////////////////////////////////////////////////////////////////
/// Read a rectangular region of interest of a PGF image at current stream position.
/// The origin of the coordinate axis is the top-left corner of the image.
/// All coordinates are measured in pixels.
/// It might throw an IOException.
/// @param rect [inout] Rectangular region of interest (ROI) at level 0. The rect might be cropped.
/// @param level [0, nLevels) The image level of the resulting image in the internal image buffer.
/// @param cb A pointer to a callback procedure. The procedure is called after reading a single level. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
void Read(PGFRect& rect, int level = 0, CallbackPtr cb = nullptr, void *data = nullptr);
#endif
//////////////////////////////////////////////////////////////////////
/// Read and decode smallest level of a PGF image at current stream position.
/// For details, please refert to Read(...)
/// Precondition: The PGF image has been opened with a call of Open(...).
/// It might throw an IOException.
void ReadPreview() { Read(Levels() - 1); }
//////////////////////////////////////////////////////////////////////
/// After you've written a PGF image, you can call this method followed by GetBitmap/GetYUV
/// to get a quick reconstruction (coded -> decoded image).
/// It might throw an IOException.
/// @param level The image level of the resulting image in the internal image buffer.
void Reconstruct(int level = 0);
//////////////////////////////////////////////////////////////////////
/// Get image data in interleaved format: (ordering of RGB data is BGR[A])
/// Upsampling, YUV to RGB transform and interleaving are done here to reduce the number
/// of passes over the data.
/// The absolute value of pitch is the number of bytes of an image row of the given image buffer.
/// If pitch is negative, then the image buffer must point to the last row of a bottom-up image (first byte on last row).
/// if pitch is positive, then the image buffer must point to the first row of a top-down image (first byte).
/// The sequence of output channels in the output image buffer does not need to be the same as provided by PGF. In case of different sequences you have to
/// provide a channelMap of size of expected channels (depending on image mode). For example, PGF provides a channel sequence BGR in RGB color mode.
/// If your provided image buffer expects a channel sequence ARGB, then the channelMap looks like { 3, 2, 1, 0 }.
/// It might throw an IOException.
/// @param pitch The number of bytes of a row of the image buffer.
/// @param buff An image buffer.
/// @param bpp The number of bits per pixel used in image buffer.
/// @param channelMap A integer array containing the mapping of PGF channel ordering to expected channel ordering.
/// @param cb A pointer to a callback procedure. The procedure is called after each copied buffer row. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
void GetBitmap(int pitch, UINT8* buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr) const; // throws IOException
//////////////////////////////////////////////////////////////////////
/// Get YUV image data in interleaved format: (ordering is YUV[A])
/// The absolute value of pitch is the number of bytes of an image row of the given image buffer.
/// If pitch is negative, then the image buffer must point to the last row of a bottom-up image (first byte on last row).
/// if pitch is positive, then the image buffer must point to the first row of a top-down image (first byte).
/// The sequence of output channels in the output image buffer does not need to be the same as provided by PGF. In case of different sequences you have to
/// provide a channelMap of size of expected channels (depending on image mode). For example, PGF provides a channel sequence BGR in RGB color mode.
/// If your provided image buffer expects a channel sequence VUY, then the channelMap looks like { 2, 1, 0 }.
/// It might throw an IOException.
/// @param pitch The number of bytes of a row of the image buffer.
/// @param buff An image buffer.
/// @param bpp The number of bits per pixel used in image buffer.
/// @param channelMap A integer array containing the mapping of PGF channel ordering to expected channel ordering.
/// @param cb A pointer to a callback procedure. The procedure is called after each copied buffer row. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
void GetYUV(int pitch, DataT* buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr) const; // throws IOException
//////////////////////////////////////////////////////////////////////
/// Import an image from a specified image buffer.
/// This method is usually called before Write(...) and after SetHeader(...).
/// The absolute value of pitch is the number of bytes of an image row.
/// If pitch is negative, then buff points to the last row of a bottom-up image (first byte on last row).
/// If pitch is positive, then buff points to the first row of a top-down image (first byte).
/// The sequence of input channels in the input image buffer does not need to be the same as expected from PGF. In case of different sequences you have to
/// provide a channelMap of size of expected channels (depending on image mode). For example, PGF expects in RGB color mode a channel sequence BGR.
/// If your provided image buffer contains a channel sequence ARGB, then the channelMap looks like { 3, 2, 1, 0 }.
/// It might throw an IOException.
/// @param pitch The number of bytes of a row of the image buffer.
/// @param buff An image buffer.
/// @param bpp The number of bits per pixel used in image buffer.
/// @param channelMap A integer array containing the mapping of input channel ordering to expected channel ordering.
/// @param cb A pointer to a callback procedure. The procedure is called after each imported buffer row. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
void ImportBitmap(int pitch, UINT8 *buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr);
//////////////////////////////////////////////////////////////////////
/// Import a YUV image from a specified image buffer.
/// The absolute value of pitch is the number of bytes of an image row.
/// If pitch is negative, then buff points to the last row of a bottom-up image (first byte on last row).
/// If pitch is positive, then buff points to the first row of a top-down image (first byte).
/// The sequence of input channels in the input image buffer does not need to be the same as expected from PGF. In case of different sequences you have to
/// provide a channelMap of size of expected channels (depending on image mode). For example, PGF expects in RGB color mode a channel sequence BGR.
/// If your provided image buffer contains a channel sequence VUY, then the channelMap looks like { 2, 1, 0 }.
/// It might throw an IOException.
/// @param pitch The number of bytes of a row of the image buffer.
/// @param buff An image buffer.
/// @param bpp The number of bits per pixel used in image buffer.
/// @param channelMap A integer array containing the mapping of input channel ordering to expected channel ordering.
/// @param cb A pointer to a callback procedure. The procedure is called after each imported buffer row. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
void ImportYUV(int pitch, DataT *buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr);
//////////////////////////////////////////////////////////////////////
/// Encode and write an entire PGF image (header and image) at current stream position.
/// A PGF image is structered in levels, numbered between 0 and Levels() - 1.
/// Each level can be seen as a single image, containing the same content
/// as all other levels, but in a different size (width, height).
/// The image size at level i is double the size (width, height) of the image at level i+1.
/// The image at level 0 contains the original size.
/// Precondition: the PGF image contains a valid header (see also SetHeader(...)).
/// It might throw an IOException.
/// @param stream A PGF stream
/// @param nWrittenBytes [in-out] The number of bytes written into stream are added to the input value.
/// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
void Write(CPGFStream* stream, UINT32* nWrittenBytes = nullptr, CallbackPtr cb = nullptr, void *data = nullptr);
//////////////////////////////////////////////////////////////////
/// Create wavelet transform channels and encoder. Write header at current stream position.
/// Call this method before your first call of Write(int level) or WriteImage(), but after SetHeader().
/// This method is called inside of Write(stream, ...).
/// It might throw an IOException.
/// @param stream A PGF stream
/// @return The number of bytes written into stream.
UINT32 WriteHeader(CPGFStream* stream);
//////////////////////////////////////////////////////////////////////
/// Encode and write an image at current stream position.
/// Call this method after WriteHeader(). In case you want to write uncached metadata,
/// then do that after WriteHeader() and before WriteImage().
/// This method is called inside of Write(stream, ...).
/// It might throw an IOException.
/// @param stream A PGF stream
/// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
/// @return The number of bytes written into stream.
UINT32 WriteImage(CPGFStream* stream, CallbackPtr cb = nullptr, void *data = nullptr);
#ifdef __PGFROISUPPORT__
//////////////////////////////////////////////////////////////////
/// Encode and write down to given level at current stream position.
/// A PGF image is structered in levels, numbered between 0 and Levels() - 1.
/// Each level can be seen as a single image, containing the same content
/// as all other levels, but in a different size (width, height).
/// The image size at level i is double the size (width, height) of the image at level i+1.
/// The image at level 0 contains the original size.
/// Preconditions: the PGF image contains a valid header (see also SetHeader(...)) and
/// WriteHeader() has been called before. Levels() > 0.
/// The ROI encoding scheme must be used (see also SetHeader(...)).
/// It might throw an IOException.
/// @param level [0, nLevels) The image level of the resulting image in the internal image buffer.
/// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding.
/// @param data Data Pointer to C++ class container to host callback procedure.
/// @return The number of bytes written into stream.
UINT32 Write(int level, CallbackPtr cb = nullptr, void *data = nullptr);
#endif
/////////////////////////////////////////////////////////////////////
/// Configures the encoder.
/// @param useOMP Use parallel threading with Open MP during encoding. Default value: true. Influences the encoding only if the codec has been compiled with OpenMP support.
/// @param favorSpeedOverSize Favors encoding speed over compression ratio. Default value: false
void ConfigureEncoder(bool useOMP = true, bool favorSpeedOverSize = false) { m_useOMPinEncoder = useOMP; m_favorSpeedOverSize = favorSpeedOverSize; }
/////////////////////////////////////////////////////////////////////
/// Configures the decoder.
/// @param useOMP Use parallel threading with Open MP during decoding. Default value: true. Influences the decoding only if the codec has been compiled with OpenMP support.
/// @param policy The file might contain user data (e.g. metadata). The policy defines the behaviour during Open().
/// UP_CacheAll: User data is read and stored completely in a new allocated memory block. It can be accessed by GetUserData().
/// UP_CachePrefix: Only prefixSize bytes at the beginning of the user data are stored in a new allocated memory block. It can be accessed by GetUserData().
/// UP_Skip: User data is skipped and nothing is cached.
/// @param prefixSize Is only used in combination with UP_CachePrefix. It defines the number of bytes cached.
void ConfigureDecoder(bool useOMP = true, UserdataPolicy policy = UP_CacheAll, UINT32 prefixSize = 0) { ASSERT(prefixSize <= MaxUserDataSize); m_useOMPinDecoder = useOMP; m_userDataPolicy = (UP_CachePrefix) ? prefixSize : 0xFFFFFFFF - policy; }
////////////////////////////////////////////////////////////////////
/// Reset stream position to start of PGF pre-header or start of data. Must not be called before Open() or before Write().
/// Use this method after Read() if you want to read the same image several times, e.g. reading different ROIs.
/// @param startOfData true: you want to read the same image several times. false: resets stream position to the initial position
void ResetStreamPos(bool startOfData);
//////////////////////////////////////////////////////////////////////
/// Set internal PGF image buffer channel.
/// @param channel A YUV data channel
/// @param c A channel index
void SetChannel(DataT* channel, int c = 0) { ASSERT(c >= 0 && c < MaxChannels); m_channel[c] = channel; }
//////////////////////////////////////////////////////////////////////
/// Set PGF header and user data.
/// Precondition: The PGF image has been never opened with Open(...).
/// It might throw an IOException.
/// @param header A valid and already filled in PGF header structure
/// @param flags A combination of additional version flags. In case you use level-wise encoding then set flag = PGFROI.
/// @param userData A user-defined memory block containing any kind of cached metadata.
/// @param userDataLength The size of user-defined memory block in bytes
void SetHeader(const PGFHeader& header, BYTE flags = 0, const UINT8* userData = 0, UINT32 userDataLength = 0); // throws IOException
//////////////////////////////////////////////////////////////////////
/// Set maximum intensity value for image modes with more than eight bits per channel.
/// Call this method after SetHeader, but before ImportBitmap.
/// @param maxValue The maximum intensity value.
void SetMaxValue(UINT32 maxValue);
//////////////////////////////////////////////////////////////////////
/// Set progress mode used in Read and Write.
/// Default mode is PM_Relative.
/// This method must be called before Open() or SetHeader().
/// PM_Relative: 100% = level difference between current level and target level of Read/Write
/// PM_Absolute: 100% = number of levels
void SetProgressMode(ProgressMode pm) { m_progressMode = pm; }
//////////////////////////////////////////////////////////////////////
/// Set refresh callback procedure and its parameter.
/// The refresh callback is called during Read(...) after each level read.
/// @param callback A refresh callback procedure
/// @param arg A parameter of the refresh callback procedure
void SetRefreshCallback(RefreshCB callback, void* arg) { m_cb = callback; m_cbArg = arg; }
//////////////////////////////////////////////////////////////////////
/// Sets the red, green, blue (RGB) color values for a range of entries in the palette (clut).
/// It might throw an IOException.
/// @param iFirstColor The color table index of the first entry to set.
/// @param nColors The number of color table entries to set.
/// @param prgbColors A pointer to the array of RGBQUAD structures to set the color table entries.
void SetColorTable(UINT32 iFirstColor, UINT32 nColors, const RGBQUAD* prgbColors);
//////////////////////////////////////////////////////////////////////
/// Return an internal YUV image channel.
/// @param c A channel index
/// @return An internal YUV image channel
DataT* GetChannel(int c = 0) { ASSERT(c >= 0 && c < MaxChannels); return m_channel[c]; }
//////////////////////////////////////////////////////////////////////
/// Retrieves red, green, blue (RGB) color values from a range of entries in the palette of the DIB section.
/// It might throw an IOException.
/// @param iFirstColor The color table index of the first entry to retrieve.
/// @param nColors The number of color table entries to retrieve.
/// @param prgbColors A pointer to the array of RGBQUAD structures to retrieve the color table entries.
void GetColorTable(UINT32 iFirstColor, UINT32 nColors, RGBQUAD* prgbColors) const;
//////////////////////////////////////////////////////////////////////
// Returns address of internal color table
/// @return Address of color table
const RGBQUAD* GetColorTable() const { return m_postHeader.clut; }
//////////////////////////////////////////////////////////////////////
/// Return the PGF header structure.
/// @return A PGF header structure
const PGFHeader* GetHeader() const { return &m_header; }
//////////////////////////////////////////////////////////////////////
/// Get maximum intensity value for image modes with more than eight bits per channel.
/// Don't call this method before the PGF header has been read.
/// @return The maximum intensity value.
UINT32 GetMaxValue() const { return (1 << m_header.usedBitsPerChannel) - 1; }
//////////////////////////////////////////////////////////////////////
/// Return the stream position of the user data or 0.
/// Precondition: The PGF image has been opened with a call of Open(...).
UINT64 GetUserDataPos() const { return m_userDataPos; }
//////////////////////////////////////////////////////////////////////
/// Return user data and size of user data.
/// Precondition: The PGF image has been opened with a call of Open(...).
/// @param cachedSize [out] Size of returned user data in bytes.
/// @param pTotalSize [optional out] Pointer to return the size of user data stored in image header in bytes.
/// @return A pointer to user data or nullptr if there is no user data available.
const UINT8* GetUserData(UINT32& cachedSize, UINT32* pTotalSize = nullptr) const;
//////////////////////////////////////////////////////////////////////
/// Return the length of all encoded headers in bytes.
/// Precondition: The PGF image has been opened with a call of Open(...).
/// @return The length of all encoded headers in bytes
UINT32 GetEncodedHeaderLength() const;
//////////////////////////////////////////////////////////////////////
/// Return the length of an encoded PGF level in bytes.
/// Precondition: The PGF image has been opened with a call of Open(...).
/// @param level The image level
/// @return The length of a PGF level in bytes
UINT32 GetEncodedLevelLength(int level) const { ASSERT(level >= 0 && level < m_header.nLevels); return m_levelLength[m_header.nLevels - level - 1]; }
//////////////////////////////////////////////////////////////////////
/// Reads the encoded PGF header and copies it to a target buffer.
/// Precondition: The PGF image has been opened with a call of Open(...).
/// It might throw an IOException.
/// @param target The target buffer
/// @param targetLen The length of the target buffer in bytes
/// @return The number of bytes copied to the target buffer
UINT32 ReadEncodedHeader(UINT8* target, UINT32 targetLen) const;
//////////////////////////////////////////////////////////////////////
/// Reads the data of an encoded PGF level and copies it to a target buffer
/// without decoding.
/// Precondition: The PGF image has been opened with a call of Open(...).
/// It might throw an IOException.
/// @param level The image level
/// @param target The target buffer
/// @param targetLen The length of the target buffer in bytes
/// @return The number of bytes copied to the target buffer
UINT32 ReadEncodedData(int level, UINT8* target, UINT32 targetLen) const;
//////////////////////////////////////////////////////////////////////
/// Return current image width of given channel in pixels.
/// The returned width depends on the levels read so far and on ROI.
/// @param c A channel index
/// @return Channel width in pixels
UINT32 ChannelWidth(int c = 0) const { ASSERT(c >= 0 && c < MaxChannels); return m_width[c]; }
//////////////////////////////////////////////////////////////////////
/// Return current image height of given channel in pixels.
/// The returned height depends on the levels read so far and on ROI.
/// @param c A channel index
/// @return Channel height in pixels
UINT32 ChannelHeight(int c = 0) const { ASSERT(c >= 0 && c < MaxChannels); return m_height[c]; }
//////////////////////////////////////////////////////////////////////
/// Return bits per channel of the image's encoder.
/// @return Bits per channel
BYTE ChannelDepth() const { return MaxChannelDepth(m_preHeader.version); }
//////////////////////////////////////////////////////////////////////
/// Return image width of channel 0 at given level in pixels.
/// The returned width is independent of any Read-operations and ROI.
/// @param level A level
/// @return Image level width in pixels
UINT32 Width(int level = 0) const { ASSERT(level >= 0); return LevelSizeL(m_header.width, level); }
//////////////////////////////////////////////////////////////////////
/// Return image height of channel 0 at given level in pixels.
/// The returned height is independent of any Read-operations and ROI.
/// @param level A level
/// @return Image level height in pixels
UINT32 Height(int level = 0) const { ASSERT(level >= 0); return LevelSizeL(m_header.height, level); }
//////////////////////////////////////////////////////////////////////
/// Return current image level.
/// Since Read(...) can be used to read each image level separately, it is
/// helpful to know the current level. The current level immediately after Open(...) is Levels().
/// @return Current image level
BYTE Level() const { return (BYTE)m_currentLevel; }
//////////////////////////////////////////////////////////////////////
/// Return the number of image levels.
/// @return Number of image levels
BYTE Levels() const { return m_header.nLevels; }
//////////////////////////////////////////////////////////////////////
/// Return true if all levels have been read
bool IsFullyRead() const { return m_currentLevel == 0; }
//////////////////////////////////////////////////////////////////////
/// Return the PGF quality. The quality is inbetween 0 and MaxQuality.
/// PGF quality 0 means lossless quality.
/// @return PGF quality
BYTE Quality() const { return m_header.quality; }
//////////////////////////////////////////////////////////////////////
/// Return the number of image channels.
/// An image of type RGB contains 3 image channels (B, G, R).
/// @return Number of image channels
BYTE Channels() const { return m_header.channels; }
//////////////////////////////////////////////////////////////////////
/// Return the image mode.
/// An image mode is a predefined constant value (see also PGFtypes.h) compatible with Adobe Photoshop.
/// It represents an image type and format.
/// @return Image mode
BYTE Mode() const { return m_header.mode; }
//////////////////////////////////////////////////////////////////////
/// Return the number of bits per pixel.
/// Valid values can be 1, 8, 12, 16, 24, 32, 48, 64.
/// @return Number of bits per pixel.
BYTE BPP() const { return m_header.bpp; }
//////////////////////////////////////////////////////////////////////
/// Return true if the pgf image supports Region Of Interest (ROI).
/// @return true if the pgf image supports ROI.
bool ROIisSupported() const { return (m_preHeader.version & PGFROI) == PGFROI; }
#ifdef __PGFROISUPPORT__
/// Return ROI of channel 0 at current level in pixels.
/// The returned rect is only valid after reading a ROI.
/// @return ROI in pixels
PGFRect ComputeLevelROI() const;
#endif
//////////////////////////////////////////////////////////////////////
/// Returns number of used bits per input/output image channel.
/// Precondition: header must be initialized.
/// @return number of used bits per input/output image channel.
BYTE UsedBitsPerChannel() const;
//////////////////////////////////////////////////////////////////////
/// Returns the used codec major version of a pgf image
/// @return PGF codec major version of this image
BYTE Version() const { BYTE ver = CodecMajorVersion(m_preHeader.version); return (ver <= 7) ? ver : (BYTE)m_header.version.major; }
//class methods
//////////////////////////////////////////////////////////////////////
/// Check for valid import image mode.
/// @param mode Image mode
/// @return True if an image of given mode can be imported with ImportBitmap(...)
static bool ImportIsSupported(BYTE mode);
//////////////////////////////////////////////////////////////////////
/// Compute and return image width/height of LL subband at given level.
/// @param size Original image size (e.g. width or height at level 0)
/// @param level An image level
/// @return Image width/height at given level in pixels
static UINT32 LevelSizeL(UINT32 size, int level) { ASSERT(level >= 0); UINT32 d = 1 << level; return (size + d - 1) >> level; }
//////////////////////////////////////////////////////////////////////
/// Compute and return image width/height of HH subband at given level.
/// @param size Original image size (e.g. width or height at level 0)
/// @param level An image level
/// @return high pass size at given level in pixels
static UINT32 LevelSizeH(UINT32 size, int level) { ASSERT(level >= 0); UINT32 d = 1 << (level - 1); return (size + d - 1) >> level; }
//////////////////////////////////////////////////////////////////////
/// Return codec major version.
/// @param version pgf pre-header version number
/// @return PGF major of given version
static BYTE CodecMajorVersion(BYTE version = PGFVersion);
//////////////////////////////////////////////////////////////////////
/// Return maximum channel depth.
/// @param version pgf pre-header version number
/// @return maximum channel depth in bit of given version (16 or 32 bit)
static BYTE MaxChannelDepth(BYTE version = PGFVersion) { return (version & PGF32) ? 32 : 16; }
protected:
CWaveletTransform* m_wtChannel[MaxChannels]; ///< wavelet transformed color channels
DataT* m_channel[MaxChannels]; ///< untransformed channels in YUV format
CDecoder* m_decoder; ///< PGF decoder
CEncoder* m_encoder; ///< PGF encoder
UINT32* m_levelLength; ///< length of each level in bytes; first level starts immediately after this array
UINT32 m_width[MaxChannels]; ///< width of each channel at current level
UINT32 m_height[MaxChannels]; ///< height of each channel at current level
PGFPreHeader m_preHeader; ///< PGF pre-header
PGFHeader m_header; ///< PGF file header
PGFPostHeader m_postHeader; ///< PGF post-header
UINT64 m_userDataPos; ///< stream position of user data
int m_currentLevel; ///< transform level of current image
UINT32 m_userDataPolicy; ///< user data (metadata) policy during open
BYTE m_quant; ///< quantization parameter
bool m_downsample; ///< chrominance channels are downsampled
bool m_favorSpeedOverSize; ///< favor encoding speed over compression ratio
bool m_useOMPinEncoder; ///< use Open MP in encoder
bool m_useOMPinDecoder; ///< use Open MP in decoder
#ifdef __PGFROISUPPORT__
bool m_streamReinitialized; ///< stream has been reinitialized
PGFRect m_roi; ///< region of interest
#endif
private:
RefreshCB m_cb; ///< pointer to refresh callback procedure
void *m_cbArg; ///< refresh callback argument
double m_percent; ///< progress [0..1]
ProgressMode m_progressMode; ///< progress mode used in Read and Write; PM_Relative is default mode
void Init();
void ComputeLevels();
bool CompleteHeader();
void RgbToYuv(int pitch, UINT8* rgbBuff, BYTE bpp, int channelMap[], CallbackPtr cb, void *data);
void Downsample(int nChannel);
UINT32 UpdatePostHeaderSize();
void WriteLevel();
#ifdef __PGFROISUPPORT__
PGFRect GetAlignedROI(int c = 0) const;
void SetROI(PGFRect rect);
#endif
UINT8 Clamp4(DataT v) const {
if (v & 0xFFFFFFF0) return (v < 0) ? (UINT8)0: (UINT8)15; else return (UINT8)v;
}
UINT16 Clamp6(DataT v) const {
if (v & 0xFFFFFFC0) return (v < 0) ? (UINT16)0: (UINT16)63; else return (UINT16)v;
}
UINT8 Clamp8(DataT v) const {
// needs only one test in the normal case
if (v & 0xFFFFFF00) return (v < 0) ? (UINT8)0 : (UINT8)255; else return (UINT8)v;
}
UINT16 Clamp16(DataT v) const {
if (v & 0xFFFF0000) return (v < 0) ? (UINT16)0: (UINT16)65535; else return (UINT16)v;
}
UINT32 Clamp31(DataT v) const {
return (v < 0) ? 0 : (UINT32)v;
}
};
#endif //PGF_PGFIMAGE_H

@ -0,0 +1,631 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2007-06-12 19:27:47 +0200 (Di, 12 Jun 2007) $
* $Revision: 307 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file PGFplatform.h
/// @brief PGF platform specific definitions
/// @author C. Stamm
#ifndef PGF_PGFPLATFORM_H
#define PGF_PGFPLATFORM_H
#include <cassert>
#include <cmath>
#include <cstdlib>
//-------------------------------------------------------------------------------
// Endianess detection taken from lcms2 header.
// This list can be endless, so only some checks are performed over here.
//-------------------------------------------------------------------------------
#if defined(_HOST_BIG_ENDIAN) || defined(__BIG_ENDIAN__) || defined(WORDS_BIGENDIAN)
#define PGF_USE_BIG_ENDIAN 1
#endif
#if defined(__sgi__) || defined(__sgi) || defined(__powerpc__) || defined(__sparc) || defined(__sparc__)
#define PGF_USE_BIG_ENDIAN 1
#endif
#if defined(__ppc__) || defined(__s390__) || defined(__s390x__)
#define PGF_USE_BIG_ENDIAN 1
#endif
#ifdef TARGET_CPU_PPC
#define PGF_USE_BIG_ENDIAN 1
#endif
//-------------------------------------------------------------------------------
// ROI support
//-------------------------------------------------------------------------------
#ifndef NPGFROI
#define __PGFROISUPPORT__ // without ROI support the program code gets simpler and smaller
#endif
//-------------------------------------------------------------------------------
// 32 bit per channel support
//-------------------------------------------------------------------------------
#ifndef NPGF32
#define __PGF32SUPPORT__ // without 32 bit the memory consumption during encoding and decoding is much lesser
#endif
//-------------------------------------------------------------------------------
// 32 Bit platform constants
//-------------------------------------------------------------------------------
#define WordWidth 32 ///< WordBytes*8
#define WordWidthLog 5 ///< ld of WordWidth
#define WordMask 0xFFFFFFE0 ///< least WordWidthLog bits are zero
#define WordBytes 4 ///< sizeof(UINT32)
#define WordBytesMask 0xFFFFFFFC ///< least WordBytesLog bits are zero
#define WordBytesLog 2 ///< ld of WordBytes
//-------------------------------------------------------------------------------
// Alignment macros (used in PGF based libraries)
//-------------------------------------------------------------------------------
#define DWWIDTHBITS(bits) (((bits) + WordWidth - 1) & WordMask) ///< aligns scanline width in bits to DWORD value
#define DWWIDTH(bytes) (((bytes) + WordBytes - 1) & WordBytesMask) ///< aligns scanline width in bytes to DWORD value
#define DWWIDTHREST(bytes) ((WordBytes - (bytes)%WordBytes)%WordBytes) ///< DWWIDTH(bytes) - bytes
//-------------------------------------------------------------------------------
// Min-Max macros
//-------------------------------------------------------------------------------
#ifndef __min
#define __min(x, y) ((x) <= (y) ? (x) : (y))
#define __max(x, y) ((x) >= (y) ? (x) : (y))
#endif // __min
//-------------------------------------------------------------------------------
// Defines -- Adobe image modes.
//-------------------------------------------------------------------------------
#define ImageModeBitmap 0
#define ImageModeGrayScale 1
#define ImageModeIndexedColor 2
#define ImageModeRGBColor 3
#define ImageModeCMYKColor 4
#define ImageModeHSLColor 5
#define ImageModeHSBColor 6
#define ImageModeMultichannel 7
#define ImageModeDuotone 8
#define ImageModeLabColor 9
#define ImageModeGray16 10 // 565
#define ImageModeRGB48 11
#define ImageModeLab48 12
#define ImageModeCMYK64 13
#define ImageModeDeepMultichannel 14
#define ImageModeDuotone16 15
// pgf extension
#define ImageModeRGBA 17
#define ImageModeGray32 18 // MSB is 0 (can be interpreted as signed 15.16 fixed point format)
#define ImageModeRGB12 19
#define ImageModeRGB16 20
#define ImageModeUnknown 255
//-------------------------------------------------------------------------------
// WINDOWS
//-------------------------------------------------------------------------------
#if defined(WIN32) || defined(WINCE) || defined(WIN64) || defined(__MINGW32__)
#define VC_EXTRALEAN // Exclude rarely-used stuff from Windows headers
//-------------------------------------------------------------------------------
// MFC
//-------------------------------------------------------------------------------
#ifdef _MFC_VER
#ifndef _WIN32_WINNT // Specifies that the minimum required platform is Windows Vista.
#define _WIN32_WINNT 0x0600 // Change this to the appropriate value to target other versions of Windows.
#endif
#include <afx.h>
#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdtctl.h> // MFC support for Internet Explorer 4 Common Controls
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT
#else
#include <windows.h>
#include <ole2.h>
#endif // _MFC_VER
//-------------------------------------------------------------------------------
#define DllExport __declspec( dllexport )
//-------------------------------------------------------------------------------
// unsigned number type definitions
//-------------------------------------------------------------------------------
typedef unsigned char UINT8;
typedef unsigned char BYTE;
typedef unsigned short UINT16;
typedef unsigned short WORD;
typedef unsigned int UINT32;
typedef unsigned long DWORD;
typedef unsigned long ULONG;
typedef unsigned __int64 UINT64;
typedef unsigned __int64 ULONGLONG;
//-------------------------------------------------------------------------------
// signed number type definitions
//-------------------------------------------------------------------------------
typedef signed char INT8;
typedef signed short INT16;
typedef signed int INT32;
typedef signed int BOOL;
typedef signed long LONG;
typedef signed __int64 INT64;
typedef signed __int64 LONGLONG;
//-------------------------------------------------------------------------------
// other types
//-------------------------------------------------------------------------------
typedef int OSError;
typedef bool (__cdecl *CallbackPtr)(double percent, bool escapeAllowed, void *data);
//-------------------------------------------------------------------------------
// struct type definitions
//-------------------------------------------------------------------------------
//-------------------------------------------------------------------------------
// DEBUG macros
//-------------------------------------------------------------------------------
#ifndef ASSERT
#ifdef _DEBUG
#define ASSERT(x) assert(x)
#else
#if defined(__GNUC__)
#define ASSERT(ignore)((void) 0)
#elif _MSC_VER >= 1300
#define ASSERT __noop
#else
#define ASSERT ((void)0)
#endif
#endif //_DEBUG
#endif //ASSERT
//-------------------------------------------------------------------------------
// Exception handling macros
//-------------------------------------------------------------------------------
#ifdef NEXCEPTIONS
extern OSError _PGF_Error_;
extern OSError GetLastPGFError();
#define ReturnWithError(err) { _PGF_Error_ = err; return; }
#define ReturnWithError2(err, ret) { _PGF_Error_ = err; return ret; }
#else
#define ReturnWithError(err) throw IOException(err)
#define ReturnWithError2(err, ret) throw IOException(err)
#endif //NEXCEPTIONS
//-------------------------------------------------------------------------------
// constants
//-------------------------------------------------------------------------------
#define FSFromStart FILE_BEGIN // 0
#define FSFromCurrent FILE_CURRENT // 1
#define FSFromEnd FILE_END // 2
#define INVALID_SET_FILE_POINTER ((DWORD)-1)
//-------------------------------------------------------------------------------
// IO Error constants
//-------------------------------------------------------------------------------
#define NoError ERROR_SUCCESS ///< no error
#define AppError 0x20000000 ///< all application error messages must be larger than this value
#define InsufficientMemory 0x20000001 ///< memory allocation was not successfull
#define InvalidStreamPos 0x20000002 ///< invalid memory stream position
#define EscapePressed 0x20000003 ///< user break by ESC
#define WrongVersion 0x20000004 ///< wrong PGF version
#define FormatCannotRead 0x20000005 ///< wrong data file format
#define ImageTooSmall 0x20000006 ///< image is too small
#define ZlibError 0x20000007 ///< error in zlib functions
#define ColorTableError 0x20000008 ///< errors related to color table size
#define PNGError 0x20000009 ///< errors in png functions
#define MissingData 0x2000000A ///< expected data cannot be read
//-------------------------------------------------------------------------------
// methods
//-------------------------------------------------------------------------------
inline OSError FileRead(HANDLE hFile, int *count, void *buffPtr) {
if (ReadFile(hFile, buffPtr, *count, (ULONG *)count, nullptr)) {
return NoError;
} else {
return GetLastError();
}
}
inline OSError FileWrite(HANDLE hFile, int *count, void *buffPtr) {
if (WriteFile(hFile, buffPtr, *count, (ULONG *)count, nullptr)) {
return NoError;
} else {
return GetLastError();
}
}
inline OSError GetFPos(HANDLE hFile, UINT64 *pos) {
#ifdef WINCE
LARGE_INTEGER li;
li.QuadPart = 0;
li.LowPart = SetFilePointer (hFile, li.LowPart, &li.HighPart, FILE_CURRENT);
if (li.LowPart == INVALID_SET_FILE_POINTER) {
OSError err = GetLastError();
if (err != NoError) {
return err;
}
}
*pos = li.QuadPart;
return NoError;
#else
LARGE_INTEGER li;
li.QuadPart = 0;
if (SetFilePointerEx(hFile, li, (PLARGE_INTEGER)pos, FILE_CURRENT)) {
return NoError;
} else {
return GetLastError();
}
#endif
}
inline OSError SetFPos(HANDLE hFile, int posMode, INT64 posOff) {
#ifdef WINCE
LARGE_INTEGER li;
li.QuadPart = posOff;
if (SetFilePointer (hFile, li.LowPart, &li.HighPart, posMode) == INVALID_SET_FILE_POINTER) {
OSError err = GetLastError();
if (err != NoError) {
return err;
}
}
return NoError;
#else
LARGE_INTEGER li;
li.QuadPart = posOff;
if (SetFilePointerEx(hFile, li, nullptr, posMode)) {
return NoError;
} else {
return GetLastError();
}
#endif
}
#endif //WIN32
//-------------------------------------------------------------------------------
// Apple OSX
//-------------------------------------------------------------------------------
#ifdef __APPLE__
#define __POSIX__
#endif // __APPLE__
//-------------------------------------------------------------------------------
// LINUX
//-------------------------------------------------------------------------------
#if defined(__linux__) || defined(__GLIBC__)
#define __POSIX__
#endif // __linux__ or __GLIBC__
//-------------------------------------------------------------------------------
// SOLARIS
//-------------------------------------------------------------------------------
#ifdef __sun
#define __POSIX__
#endif // __sun
//-------------------------------------------------------------------------------
// *BSD
//-------------------------------------------------------------------------------
#if defined(__NetBSD__) || defined(__OpenBSD__) || defined(__FreeBSD__)
#ifndef __POSIX__
#define __POSIX__
#endif
#ifndef off64_t
#define off64_t off_t
#endif
#ifndef lseek64
#define lseek64 lseek
#endif
#endif // __NetBSD__ or __OpenBSD__ or __FreeBSD__
//-------------------------------------------------------------------------------
// POSIX *NIXes
//-------------------------------------------------------------------------------
#ifdef __POSIX__
#include <unistd.h>
#include <errno.h>
#include <stdint.h> // for int64_t and uint64_t
#include <string.h> // memcpy()
#undef major
//-------------------------------------------------------------------------------
// unsigned number type definitions
//-------------------------------------------------------------------------------
typedef unsigned char UINT8;
typedef unsigned char BYTE;
typedef unsigned short UINT16;
typedef unsigned short WORD;
typedef unsigned int UINT32;
typedef unsigned int DWORD;
typedef unsigned long ULONG;
typedef unsigned long long __Uint64;
typedef __Uint64 UINT64;
typedef __Uint64 ULONGLONG;
//-------------------------------------------------------------------------------
// signed number type definitions
//-------------------------------------------------------------------------------
typedef signed char INT8;
typedef signed short INT16;
typedef signed int INT32;
typedef signed int BOOL;
typedef signed long LONG;
typedef int64_t INT64;
typedef int64_t LONGLONG;
//-------------------------------------------------------------------------------
// other types
//-------------------------------------------------------------------------------
typedef int OSError;
typedef int HANDLE;
typedef unsigned long ULONG_PTR;
typedef void* PVOID;
typedef char* LPTSTR;
typedef bool (*CallbackPtr)(double percent, bool escapeAllowed, void *data);
//-------------------------------------------------------------------------------
// struct type definitions
//-------------------------------------------------------------------------------
typedef struct tagRGBTRIPLE {
BYTE rgbtBlue;
BYTE rgbtGreen;
BYTE rgbtRed;
} RGBTRIPLE;
typedef struct tagRGBQUAD {
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;
} RGBQUAD;
typedef union _LARGE_INTEGER {
struct {
DWORD LowPart;
LONG HighPart;
} u;
LONGLONG QuadPart;
} LARGE_INTEGER, *PLARGE_INTEGER;
#endif // __POSIX__
#if defined(__POSIX__) || defined(WINCE)
// CMYK macros
#define GetKValue(cmyk) ((BYTE)(cmyk))
#define GetYValue(cmyk) ((BYTE)((cmyk)>> 8))
#define GetMValue(cmyk) ((BYTE)((cmyk)>>16))
#define GetCValue(cmyk) ((BYTE)((cmyk)>>24))
#define CMYK(c,m,y,k) ((COLORREF)((((BYTE)(k)|((WORD)((BYTE)(y))<<8))|(((DWORD)(BYTE)(m))<<16))|(((DWORD)(BYTE)(c))<<24)))
//-------------------------------------------------------------------------------
// methods
//-------------------------------------------------------------------------------
/* The MulDiv function multiplies two 32-bit values and then divides the 64-bit
* result by a third 32-bit value. The return value is rounded up or down to
* the nearest integer.
* http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winprog/winprog/muldiv.asp
* */
__inline int MulDiv(int nNumber, int nNumerator, int nDenominator) {
INT64 multRes = nNumber*nNumerator;
INT32 divRes = INT32(multRes/nDenominator);
return divRes;
}
#endif // __POSIX__ or WINCE
#ifdef __POSIX__
//-------------------------------------------------------------------------------
// DEBUG macros
//-------------------------------------------------------------------------------
#ifndef ASSERT
#ifdef _DEBUG
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif //_DEBUG
#endif //ASSERT
//-------------------------------------------------------------------------------
// Exception handling macros
//-------------------------------------------------------------------------------
#ifdef NEXCEPTIONS
extern OSError _PGF_Error_;
extern OSError GetLastPGFError();
#define ReturnWithError(err) { _PGF_Error_ = err; return; }
#define ReturnWithError2(err, ret) { _PGF_Error_ = err; return ret; }
#else
#define ReturnWithError(err) throw IOException(err)
#define ReturnWithError2(err, ret) throw IOException(err)
#endif //NEXCEPTIONS
#define THROW_ throw(IOException)
#define CONST const
//-------------------------------------------------------------------------------
// constants
//-------------------------------------------------------------------------------
#define FSFromStart SEEK_SET
#define FSFromCurrent SEEK_CUR
#define FSFromEnd SEEK_END
#define nullptr NULL
//-------------------------------------------------------------------------------
// IO Error constants
//-------------------------------------------------------------------------------
#define NoError 0x0000 ///< no error
#define AppError 0x2000 ///< all application error messages must be larger than this value
#define InsufficientMemory 0x2001 ///< memory allocation wasn't successfull
#define InvalidStreamPos 0x2002 ///< invalid memory stream position
#define EscapePressed 0x2003 ///< user break by ESC
#define WrongVersion 0x2004 ///< wrong pgf version
#define FormatCannotRead 0x2005 ///< wrong data file format
#define ImageTooSmall 0x2006 ///< image is too small
#define ZlibError 0x2007 ///< error in zlib functions
#define ColorTableError 0x2008 ///< errors related to color table size
#define PNGError 0x2009 ///< errors in png functions
#define MissingData 0x200A ///< expected data cannot be read
//-------------------------------------------------------------------------------
// methods
//-------------------------------------------------------------------------------
__inline OSError FileRead(HANDLE hFile, int *count, void *buffPtr) {
*count = (int)read(hFile, buffPtr, *count);
if (*count != -1) {
return NoError;
} else {
return errno;
}
}
__inline OSError FileWrite(HANDLE hFile, int *count, void *buffPtr) {
*count = (int)write(hFile, buffPtr, (size_t)*count);
if (*count != -1) {
return NoError;
} else {
return errno;
}
}
__inline OSError GetFPos(HANDLE hFile, UINT64 *pos) {
#ifdef __APPLE__
off_t ret;
if ((ret = lseek(hFile, 0, SEEK_CUR)) == -1) {
return errno;
} else {
*pos = (UINT64)ret;
return NoError;
}
#else
off64_t ret;
if ((ret = lseek64(hFile, 0, SEEK_CUR)) == -1) {
return errno;
} else {
*pos = (UINT64)ret;
return NoError;
}
#endif
}
__inline OSError SetFPos(HANDLE hFile, int posMode, INT64 posOff) {
#ifdef __APPLE__
if ((lseek(hFile, (off_t)posOff, posMode)) == -1) {
return errno;
} else {
return NoError;
}
#else
if ((lseek64(hFile, (off64_t)posOff, posMode)) == -1) {
return errno;
} else {
return NoError;
}
#endif
}
#endif /* __POSIX__ */
//-------------------------------------------------------------------------------
//-------------------------------------------------------------------------------
// Big Endian
//-------------------------------------------------------------------------------
#ifdef PGF_USE_BIG_ENDIAN
#ifndef _lrotl
#define _lrotl(x,n) (((x) << ((UINT32)(n))) | ((x) >> (32 - (UINT32)(n))))
#endif
__inline UINT16 ByteSwap(UINT16 wX) {
return ((wX & 0xFF00) >> 8) | ((wX & 0x00FF) << 8);
}
__inline UINT32 ByteSwap(UINT32 dwX) {
#ifdef _X86_
_asm mov eax, dwX
_asm bswap eax
_asm mov dwX, eax
return dwX;
#else
return _lrotl(((dwX & 0xFF00FF00) >> 8) | ((dwX & 0x00FF00FF) << 8), 16);
#endif
}
#if defined(WIN32) || defined(WIN64)
__inline UINT64 ByteSwap(UINT64 ui64) {
return _byteswap_uint64(ui64);
}
#endif
#define __VAL(x) ByteSwap(x)
#else //PGF_USE_BIG_ENDIAN
#define __VAL(x) (x)
#endif //PGF_USE_BIG_ENDIAN
// OpenMP rules (inspired from libraw project)
// NOTE: Use LIBPGF_DISABLE_OPENMP to disable OpenMP support in whole libpgf
#ifndef LIBPGF_DISABLE_OPENMP
# if defined (_OPENMP)
# if defined (WIN32) || defined(WIN64)
# if defined (_MSC_VER) && (_MSC_VER >= 1500)
// VS2008 SP1 and VS2010+ : OpenMP works OK
# define LIBPGF_USE_OPENMP
# elif defined (__INTEL_COMPILER) && (__INTEL_COMPILER >=910)
// untested on 9.x and 10.x, Intel documentation claims OpenMP 2.5 support in 9.1
# define LIBPGF_USE_OPENMP
# else
# undef LIBPGF_USE_OPENMP
# endif
// Not Win32
# elif (defined(__APPLE__) || defined(__MACOSX__)) && defined(_REENTRANT)
# undef LIBPGF_USE_OPENMP
# else
# define LIBPGF_USE_OPENMP
# endif
# endif // defined (_OPENMP)
#endif // ifndef LIBPGF_DISABLE_OPENMP
#ifdef LIBPGF_USE_OPENMP
#include <omp.h>
#endif
#endif //PGF_PGFPLATFORM_H

@ -0,0 +1,274 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2007-01-19 11:51:24 +0100 (Fr, 19 Jan 2007) $
* $Revision: 268 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file PGFstream.cpp
/// @brief PGF stream class implementation
/// @author C. Stamm
#include "PGFstream.h"
#ifdef WIN32
#include <malloc.h>
#endif
//////////////////////////////////////////////////////////////////////
// CPGFFileStream
//////////////////////////////////////////////////////////////////////
void CPGFFileStream::Write(int *count, void *buffPtr) {
ASSERT(count);
ASSERT(buffPtr);
ASSERT(IsValid());
OSError err;
if ((err = FileWrite(m_hFile, count, buffPtr)) != NoError) ReturnWithError(err);
}
//////////////////////////////////////////////////////////////////////
void CPGFFileStream::Read(int *count, void *buffPtr) {
ASSERT(count);
ASSERT(buffPtr);
ASSERT(IsValid());
OSError err;
if ((err = FileRead(m_hFile, count, buffPtr)) != NoError) ReturnWithError(err);
}
//////////////////////////////////////////////////////////////////////
void CPGFFileStream::SetPos(short posMode, INT64 posOff) {
ASSERT(IsValid());
OSError err;
if ((err = SetFPos(m_hFile, posMode, posOff)) != NoError) ReturnWithError(err);
}
//////////////////////////////////////////////////////////////////////
UINT64 CPGFFileStream::GetPos() const {
ASSERT(IsValid());
OSError err;
UINT64 pos = 0;
if ((err = GetFPos(m_hFile, &pos)) != NoError) ReturnWithError2(err, pos);
return pos;
}
//////////////////////////////////////////////////////////////////////
// CPGFMemoryStream
//////////////////////////////////////////////////////////////////////
/// Allocate memory block of given size
/// @param size Memory size
CPGFMemoryStream::CPGFMemoryStream(size_t size)
: m_size(size)
, m_allocated(true) {
m_buffer = m_pos = m_eos = new(std::nothrow) UINT8[m_size];
if (!m_buffer) ReturnWithError(InsufficientMemory);
}
//////////////////////////////////////////////////////////////////////
/// Use already allocated memory of given size
/// @param pBuffer Memory location
/// @param size Memory size
CPGFMemoryStream::CPGFMemoryStream(UINT8 *pBuffer, size_t size)
: m_buffer(pBuffer)
, m_pos(pBuffer)
, m_eos(pBuffer + size)
, m_size(size)
, m_allocated(false) {
ASSERT(IsValid());
}
//////////////////////////////////////////////////////////////////////
/// Use already allocated memory of given size
/// @param pBuffer Memory location
/// @param size Memory size
void CPGFMemoryStream::Reinitialize(UINT8 *pBuffer, size_t size) {
if (!m_allocated) {
m_buffer = m_pos = pBuffer;
m_size = size;
m_eos = m_buffer + size;
}
}
//////////////////////////////////////////////////////////////////////
void CPGFMemoryStream::Write(int *count, void *buffPtr) {
ASSERT(count);
ASSERT(buffPtr);
ASSERT(IsValid());
const size_t deltaSize = 0x4000 + *count;
if (m_pos + *count <= m_buffer + m_size) {
memcpy(m_pos, buffPtr, *count);
m_pos += *count;
if (m_pos > m_eos) m_eos = m_pos;
} else if (m_allocated) {
// memory block is too small -> reallocate a deltaSize larger block
size_t offset = m_pos - m_buffer;
UINT8 *buf_tmp = (UINT8 *)realloc(m_buffer, m_size + deltaSize);
if (!buf_tmp) {
delete[] m_buffer;
m_buffer = 0;
ReturnWithError(InsufficientMemory);
} else {
m_buffer = buf_tmp;
}
m_size += deltaSize;
// reposition m_pos
m_pos = m_buffer + offset;
// write block
memcpy(m_pos, buffPtr, *count);
m_pos += *count;
if (m_pos > m_eos) m_eos = m_pos;
} else {
ReturnWithError(InsufficientMemory);
}
ASSERT(m_pos <= m_eos);
}
//////////////////////////////////////////////////////////////////////
void CPGFMemoryStream::Read(int *count, void *buffPtr) {
ASSERT(IsValid());
ASSERT(count);
ASSERT(buffPtr);
ASSERT(m_buffer + m_size >= m_eos);
ASSERT(m_pos <= m_eos);
if (m_pos + *count <= m_eos) {
memcpy(buffPtr, m_pos, *count);
m_pos += *count;
} else {
// end of memory block reached -> read only until end
*count = (int)__max(0, m_eos - m_pos);
memcpy(buffPtr, m_pos, *count);
m_pos += *count;
}
ASSERT(m_pos <= m_eos);
}
//////////////////////////////////////////////////////////////////////
void CPGFMemoryStream::SetPos(short posMode, INT64 posOff) {
ASSERT(IsValid());
switch(posMode) {
case FSFromStart:
m_pos = m_buffer + posOff;
break;
case FSFromCurrent:
m_pos += posOff;
break;
case FSFromEnd:
m_pos = m_eos + posOff;
break;
default:
ASSERT(false);
}
if (m_pos > m_eos)
ReturnWithError(InvalidStreamPos);
}
//////////////////////////////////////////////////////////////////////
// CPGFMemFileStream
#ifdef _MFC_VER
//////////////////////////////////////////////////////////////////////
void CPGFMemFileStream::Write(int *count, void *buffPtr) {
ASSERT(count);
ASSERT(buffPtr);
ASSERT(IsValid());
m_memFile->Write(buffPtr, *count);
}
//////////////////////////////////////////////////////////////////////
void CPGFMemFileStream::Read(int *count, void *buffPtr) {
ASSERT(count);
ASSERT(buffPtr);
ASSERT(IsValid());
m_memFile->Read(buffPtr, *count);
}
//////////////////////////////////////////////////////////////////////
void CPGFMemFileStream::SetPos(short posMode, INT64 posOff) {
ASSERT(IsValid());
m_memFile->Seek(posOff, posMode);
}
//////////////////////////////////////////////////////////////////////
UINT64 CPGFMemFileStream::GetPos() const {
return (UINT64)m_memFile->GetPosition();
}
#endif // _MFC_VER
//////////////////////////////////////////////////////////////////////
// CPGFIStream
#if defined(WIN32) || defined(WINCE)
//////////////////////////////////////////////////////////////////////
void CPGFIStream::Write(int *count, void *buffPtr) {
ASSERT(count);
ASSERT(buffPtr);
ASSERT(IsValid());
HRESULT hr = m_stream->Write(buffPtr, *count, (ULONG *)count);
if (FAILED(hr)) {
ReturnWithError(hr);
}
}
//////////////////////////////////////////////////////////////////////
void CPGFIStream::Read(int *count, void *buffPtr) {
ASSERT(count);
ASSERT(buffPtr);
ASSERT(IsValid());
HRESULT hr = m_stream->Read(buffPtr, *count, (ULONG *)count);
if (FAILED(hr)) {
ReturnWithError(hr);
}
}
//////////////////////////////////////////////////////////////////////
void CPGFIStream::SetPos(short posMode, INT64 posOff) {
ASSERT(IsValid());
LARGE_INTEGER li;
li.QuadPart = posOff;
HRESULT hr = m_stream->Seek(li, posMode, nullptr);
if (FAILED(hr)) {
ReturnWithError(hr);
}
}
//////////////////////////////////////////////////////////////////////
UINT64 CPGFIStream::GetPos() const {
ASSERT(IsValid());
LARGE_INTEGER n;
ULARGE_INTEGER pos;
n.QuadPart = 0;
HRESULT hr = m_stream->Seek(n, FSFromCurrent, &pos);
if (SUCCEEDED(hr)) {
return pos.QuadPart;
} else {
ReturnWithError2(hr, pos.QuadPart);
}
}
#endif // WIN32 || WINCE

@ -0,0 +1,193 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2007-06-11 10:56:17 +0200 (Mo, 11 Jun 2007) $
* $Revision: 299 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file PGFstream.h
/// @brief PGF stream class
/// @author C. Stamm
#ifndef PGF_STREAM_H
#define PGF_STREAM_H
#include "PGFtypes.h"
#include <new>
/////////////////////////////////////////////////////////////////////
/// Abstract stream base class.
/// @author C. Stamm
/// @brief Abstract stream base class
class CPGFStream {
public:
//////////////////////////////////////////////////////////////////////
/// Standard constructor.
CPGFStream() {}
//////////////////////////////////////////////////////////////////////
/// Standard destructor.
virtual ~CPGFStream() {}
//////////////////////////////////////////////////////////////////////
/// Write some bytes out of a buffer into this stream.
/// @param count A pointer to a value containing the number of bytes should be written. After this call it contains the number of written bytes.
/// @param buffer A memory buffer
virtual void Write(int *count, void *buffer)=0;
//////////////////////////////////////////////////////////////////////
/// Read some bytes from this stream and stores them into a buffer.
/// @param count A pointer to a value containing the number of bytes should be read. After this call it contains the number of read bytes.
/// @param buffer A memory buffer
virtual void Read(int *count, void *buffer)=0;
//////////////////////////////////////////////////////////////////////
/// Set stream position either absolute or relative.
/// @param posMode A position mode (FSFromStart, FSFromCurrent, FSFromEnd)
/// @param posOff A new stream position (absolute positioning) or a position offset (relative positioning)
virtual void SetPos(short posMode, INT64 posOff)=0;
//////////////////////////////////////////////////////////////////////
/// Get current stream position.
/// @return Current stream position
virtual UINT64 GetPos() const=0;
//////////////////////////////////////////////////////////////////////
/// Check stream validity.
/// @return True if stream and current position is valid
virtual bool IsValid() const=0;
};
/////////////////////////////////////////////////////////////////////
/// A PGF stream subclass for external storage files.
/// @author C. Stamm
/// @brief File stream class
class CPGFFileStream : public CPGFStream {
protected:
HANDLE m_hFile; ///< file handle
public:
CPGFFileStream() : m_hFile(0) {}
/// Constructor
/// @param hFile File handle
CPGFFileStream(HANDLE hFile) : m_hFile(hFile) {}
/// @return File handle
HANDLE GetHandle() { return m_hFile; }
virtual ~CPGFFileStream() { m_hFile = 0; }
virtual void Write(int *count, void *buffer); // throws IOException
virtual void Read(int *count, void *buffer); // throws IOException
virtual void SetPos(short posMode, INT64 posOff); // throws IOException
virtual UINT64 GetPos() const; // throws IOException
virtual bool IsValid() const { return m_hFile != 0; }
};
/////////////////////////////////////////////////////////////////////
/// A PGF stream subclass for internal memory.
/// @author C. Stamm
/// @brief Memory stream class
class CPGFMemoryStream : public CPGFStream {
protected:
UINT8 *m_buffer, *m_pos;///< buffer start address and current buffer address
UINT8 *m_eos; ///< end of stream (first address beyond written area)
size_t m_size; ///< buffer size
bool m_allocated; ///< indicates a new allocated buffer
public:
/// Constructor
/// @param size Size of new allocated memory buffer
CPGFMemoryStream(size_t size);
/// Constructor. Use already allocated memory of given size
/// @param pBuffer Memory location
/// @param size Memory size
CPGFMemoryStream(UINT8 *pBuffer, size_t size);
/// Use already allocated memory of given size
/// @param pBuffer Memory location
/// @param size Memory size
void Reinitialize(UINT8 *pBuffer, size_t size);
virtual ~CPGFMemoryStream() {
m_pos = 0;
if (m_allocated) {
// the memory buffer has been allocated inside of CPMFmemoryStream constructor
delete[] m_buffer; m_buffer = 0;
}
}
virtual void Write(int *count, void *buffer); // throws IOException
virtual void Read(int *count, void *buffer);
virtual void SetPos(short posMode, INT64 posOff); // throws IOException
virtual UINT64 GetPos() const { ASSERT(IsValid()); return m_pos - m_buffer; }
virtual bool IsValid() const { return m_buffer != 0; }
/// @return Memory size
size_t GetSize() const { return m_size; }
/// @return Memory buffer
const UINT8* GetBuffer() const { return m_buffer; }
/// @return Memory buffer
UINT8* GetBuffer() { return m_buffer; }
/// @return relative position of end of stream (= stream length)
UINT64 GetEOS() const { ASSERT(IsValid()); return m_eos - m_buffer; }
/// @param length Stream length (= relative position of end of stream)
void SetEOS(UINT64 length) { ASSERT(IsValid()); m_eos = m_buffer + length; }
};
/////////////////////////////////////////////////////////////////////
/// A PGF stream subclass for internal memory files. Usable only with MFC.
/// @author C. Stamm
/// @brief Cached memory file stream class
#ifdef _MFC_VER
class CPGFMemFileStream : public CPGFStream {
protected:
CMemFile *m_memFile; ///< MFC memory file
public:
CPGFMemFileStream(CMemFile *memFile) : m_memFile(memFile) {}
virtual bool IsValid() const { return m_memFile != nullptr; }
virtual ~CPGFMemFileStream() {}
virtual void Write(int *count, void *buffer); // throws IOException
virtual void Read(int *count, void *buffer); // throws IOException
virtual void SetPos(short posMode, INT64 posOff); // throws IOException
virtual UINT64 GetPos() const; // throws IOException
};
#endif
/////////////////////////////////////////////////////////////////////
/// A PGF stream subclass for IStream. Usable only with COM.
/// @author C. Stamm
/// @brief COM IStream class
#if defined(WIN32) || defined(WINCE)
class CPGFIStream : public CPGFStream {
protected:
IStream *m_stream; ///< COM+ IStream
public:
CPGFIStream(IStream *stream) : m_stream(stream) { m_stream->AddRef(); }
virtual bool IsValid() const { return m_stream != 0; }
virtual ~CPGFIStream() { m_stream->Release(); }
virtual void Write(int *count, void *buffer); // throws IOException
virtual void Read(int *count, void *buffer); // throws IOException
virtual void SetPos(short posMode, INT64 posOff); // throws IOException
virtual UINT64 GetPos() const; // throws IOException
IStream* GetIStream() const { return m_stream; }
};
#endif
#endif // PGF_STREAM_H

@ -0,0 +1,290 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2007-06-11 10:56:17 +0200 (Mo, 11 Jun 2007) $
* $Revision: 299 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file PGFtypes.h
/// @brief PGF definitions
/// @author C. Stamm
#ifndef PGF_PGFTYPES_H
#define PGF_PGFTYPES_H
#include "PGFplatform.h"
//-------------------------------------------------------------------------------
// Codec versions
//
// Version 2: modified data structure PGFHeader (backward compatibility assured)
// Version 4: DataT: INT32 instead of INT16, allows 31 bit per pixel and channel (backward compatibility assured)
// Version 5: ROI, new block-reordering scheme (backward compatibility assured)
// Version 6: modified data structure PGFPreHeader: hSize (header size) is now a UINT32 instead of a UINT16 (backward compatibility assured)
// Version 7: last two bytes in header are now used for extended version numbers; new data representation for bitmaps (backward compatibility assured)
//
//-------------------------------------------------------------------------------
#define PGFMajorNumber 7
#define PGFYear 19
#define PGFWeek 03
#define PPCAT_NX(A, B) A ## B
#define PPCAT(A, B) PPCAT_NX(A, B)
#define STRINGIZE_NX(A) #A
#define STRINGIZE(A) STRINGIZE_NX(A)
//#define PGFCodecVersionID 0x071822
#define PGFCodecVersionID PPCAT(PPCAT(PPCAT(0x0, PGFMajorNumber), PGFYear), PGFWeek)
//#define PGFCodecVersion "7.19.3" ///< Major number, Minor number: Year (2) Week (2)
#define PGFCodecVersion STRINGIZE(PPCAT(PPCAT(PPCAT(PPCAT(PGFMajorNumber, .), PGFYear), .), PGFWeek))
//-------------------------------------------------------------------------------
// Image constants
//-------------------------------------------------------------------------------
#define PGFMagic "PGF" ///< PGF identification
#define MaxLevel 30 ///< maximum number of transform levels
#define NSubbands 4 ///< number of subbands per level
#define MaxChannels 8 ///< maximum number of (color) channels
#define DownsampleThreshold 3 ///< if quality is larger than this threshold than downsampling is used
#define ColorTableLen 256 ///< size of color lookup table (clut)
// version flags
#define Version2 2 ///< data structure PGFHeader of major version 2
#define PGF32 4 ///< 32 bit values are used -> allows at maximum 31 bits, otherwise 16 bit values are used -> allows at maximum 15 bits
#define PGFROI 8 ///< supports Regions Of Interest
#define Version5 16 ///< new coding scheme since major version 5
#define Version6 32 ///< hSize in PGFPreHeader uses 32 bits instead of 16 bits
#define Version7 64 ///< Codec major and minor version number stored in PGFHeader
// version numbers
#ifdef __PGF32SUPPORT__
#define PGFVersion (Version2 | PGF32 | Version5 | Version6 | Version7) ///< current standard version
#else
#define PGFVersion (Version2 | Version5 | Version6 | Version7) ///< current standard version
#endif
//-------------------------------------------------------------------------------
// Coder constants
//-------------------------------------------------------------------------------
#define BufferSize 16384 ///< must be a multiple of WordWidth, BufferSize <= UINT16_MAX
#define RLblockSizeLen 15 ///< block size length (< 16): ld(BufferSize) < RLblockSizeLen <= 2*ld(BufferSize)
#define LinBlockSize 8 ///< side length of a coefficient block in a HH or LL subband
#define InterBlockSize 4 ///< side length of a coefficient block in a HL or LH subband
#ifdef __PGF32SUPPORT__
#define MaxBitPlanes 31 ///< maximum number of bit planes of m_value: 32 minus sign bit
#else
#define MaxBitPlanes 15 ///< maximum number of bit planes of m_value: 16 minus sign bit
#endif
#define MaxBitPlanesLog 5 ///< number of bits to code the maximum number of bit planes (in 32 or 16 bit mode)
#define MaxQuality MaxBitPlanes ///< maximum quality
//-------------------------------------------------------------------------------
// Types
//-------------------------------------------------------------------------------
enum Orientation { LL = 0, HL = 1, LH = 2, HH = 3 };
enum ProgressMode { PM_Relative, PM_Absolute };
enum UserdataPolicy { UP_Skip = 0, UP_CachePrefix = 1, UP_CacheAll = 2 };
/// general PGF file structure
/// PGFPreHeader PGFHeader [PGFPostHeader] LevelLengths Level_n-1 Level_n-2 ... Level_0
/// PGFPostHeader ::= [ColorTable] [UserData]
/// LevelLengths ::= UINT32[nLevels]
#pragma pack(1)
/////////////////////////////////////////////////////////////////////
/// PGF magic and version (part of PGF pre-header)
/// @author C. Stamm
/// @brief PGF identification and version
struct PGFMagicVersion {
char magic[3]; ///< PGF identification = "PGF"
UINT8 version; ///< PGF version
// total: 4 Bytes
};
/////////////////////////////////////////////////////////////////////
/// PGF pre-header defined header length and PGF identification and version
/// @author C. Stamm
/// @brief PGF pre-header
struct PGFPreHeader : PGFMagicVersion {
UINT32 hSize; ///< total size of PGFHeader, [ColorTable], and [UserData] in bytes (since Version 6: 4 Bytes)
// total: 8 Bytes
};
/////////////////////////////////////////////////////////////////////
/// Version number since major version 7
/// @author C. Stamm
/// @brief version number stored in header since major version 7
struct PGFVersionNumber {
PGFVersionNumber(UINT8 _major, UINT8 _year, UINT8 _week)
#ifdef PGF_USE_BIG_ENDIAN
: week(_week), year(_year), major(_major) {}
#else
: major(_major), year(_year), week(_week) {}
#endif // PGF_USE_BIG_ENDIAN
#ifdef PGF_USE_BIG_ENDIAN
UINT16 week : 6; ///< week number in a year
UINT16 year : 6; ///< year since 2000 (year 2001 = 1)
UINT16 major : 4; ///< major version number
#else
UINT16 major : 4; ///< major version number
UINT16 year : 6; ///< year since 2000 (year 2001 = 1)
UINT16 week : 6; ///< week number in a year
#endif // PGF_USE_BIG_ENDIAN
};
/////////////////////////////////////////////////////////////////////
/// PGF header contains image information
/// @author C. Stamm
/// @brief PGF header
struct PGFHeader {
PGFHeader() : width(0), height(0), nLevels(0), quality(0), bpp(0), channels(0), mode(ImageModeUnknown), usedBitsPerChannel(0), version(0, 0, 0) {}
UINT32 width; ///< image width in pixels
UINT32 height; ///< image height in pixels
UINT8 nLevels; ///< number of FWT transforms
UINT8 quality; ///< quantization parameter: 0=lossless, 4=standard, 6=poor quality
UINT8 bpp; ///< bits per pixel
UINT8 channels; ///< number of channels
UINT8 mode; ///< image mode according to Adobe's image modes
UINT8 usedBitsPerChannel; ///< number of used bits per channel in 16- and 32-bit per channel modes
PGFVersionNumber version; ///< codec version number: (since Version 7)
// total: 16 Bytes
};
/////////////////////////////////////////////////////////////////////
/// PGF post-header is optional. It contains color table and user data
/// @author C. Stamm
/// @brief Optional PGF post-header
struct PGFPostHeader {
RGBQUAD clut[ColorTableLen];///< color table for indexed color images (optional part of file header)
UINT8 *userData; ///< user data of size userDataLen (optional part of file header)
UINT32 userDataLen; ///< user data size in bytes (not part of file header)
UINT32 cachedUserDataLen; ///< cached user data size in bytes (not part of file header)
};
/////////////////////////////////////////////////////////////////////
/// ROI block header is used with ROI coding scheme. It contains block size and tile end flag
/// @author C. Stamm
/// @brief Block header used with ROI coding scheme
union ROIBlockHeader {
UINT16 val; ///< unstructured union value
/// @brief Named ROI block header (part of the union)
struct RBH {
#ifdef PGF_USE_BIG_ENDIAN
UINT16 tileEnd : 1; ///< 1: last part of a tile
UINT16 bufferSize: RLblockSizeLen; ///< number of uncoded UINT32 values in a block
#else
UINT16 bufferSize: RLblockSizeLen; ///< number of uncoded UINT32 values in a block
UINT16 tileEnd : 1; ///< 1: last part of a tile
#endif // PGF_USE_BIG_ENDIAN
} rbh; ///< ROI block header
// total: 2 Bytes
/// Constructor
/// @param v Buffer size
ROIBlockHeader(UINT16 v) { val = v; }
/// Constructor
/// @param size Buffer size
/// @param end 0/1 Flag; 1: last part of a tile
ROIBlockHeader(UINT32 size, bool end) { ASSERT(size < (1 << RLblockSizeLen)); rbh.bufferSize = size; rbh.tileEnd = end; }
};
#pragma pack()
/////////////////////////////////////////////////////////////////////
/// PGF I/O exception
/// @author C. Stamm
/// @brief PGF exception
struct IOException {
OSError error; ///< operating system error code
/// Standard constructor
IOException() : error(NoError) {}
/// Constructor
/// @param err Run-time error
IOException(OSError err) : error(err) {}
};
/////////////////////////////////////////////////////////////////////
/// Rectangle
/// @author C. Stamm
/// @brief Rectangle
struct PGFRect {
UINT32 left, top, right, bottom;
/// Standard constructor
PGFRect() : left(0), top(0), right(0), bottom(0) {}
/// Constructor
/// @param x Left offset
/// @param y Top offset
/// @param width Rectangle width
/// @param height Rectangle height
PGFRect(UINT32 x, UINT32 y, UINT32 width, UINT32 height) : left(x), top(y), right(x + width), bottom(y + height) {}
#ifdef WIN32
PGFRect(const RECT& rect) : left(rect.left), top(rect.top), right(rect.right), bottom(rect.bottom) {
ASSERT(rect.left >= 0 && rect.right >= 0 && rect.left <= rect.right);
ASSERT(rect.top >= 0 && rect.bottom >= 0 && rect.top <= rect.bottom);
}
PGFRect& operator=(const RECT& rect) {
left = rect.left; top = rect.top; right = rect.right; bottom = rect.bottom;
return *this;
}
operator RECT() {
RECT rect = { (LONG)left, (LONG)top, (LONG)right, (LONG)bottom };
return rect;
}
#endif
/// @return Rectangle width
UINT32 Width() const { return right - left; }
/// @return Rectangle height
UINT32 Height() const { return bottom - top; }
/// Test if point (x,y) is inside this rectangle (inclusive top-left edges, exclusive bottom-right edges)
/// @param x Point coordinate x
/// @param y Point coordinate y
/// @return True if point (x,y) is inside this rectangle (inclusive top-left edges, exclusive bottom-right edges)
bool IsInside(UINT32 x, UINT32 y) const { return (x >= left && x < right && y >= top && y < bottom); }
};
#ifdef __PGF32SUPPORT__
typedef INT32 DataT;
#else
typedef INT16 DataT;
#endif
typedef void (*RefreshCB)(void *p);
//-------------------------------------------------------------------------------
// Image constants
//-------------------------------------------------------------------------------
#define MagicVersionSize sizeof(PGFMagicVersion)
#define PreHeaderSize sizeof(PGFPreHeader)
#define HeaderSize sizeof(PGFHeader)
#define ColorTableSize (ColorTableLen*sizeof(RGBQUAD))
#define DataTSize sizeof(DataT)
#define MaxUserDataSize 0x7FFFFFFF
#endif //PGF_PGFTYPES_H

@ -0,0 +1,114 @@
The Progressive Graphics File
=============================
For more information see http://www.libpgf.org. There you can find some
documents concerning this progressive graphic file codec.
This project is hosted on the Sourceforge.net platform. For support and
questions, please use the installed mailing list and forums there.
The Sourceforge URL of our project is: http://sourceforge.net/projects/libpgf
=============================
Release Notes
Version 7.19.3, (Tue, 15 Jan 2019)
------------------------------------
1. The new version is a minor update of version 7.15.25.
2. This version fixes a compilation bug seen when ROI support is disabled.
Version 7.15.32, (Thu, 6 Aug 2015)
------------------------------------
1. The new version is a minor update of version 7.15.25.
2. This version improves the reuse of CPGFImage objects for several decoding operations.
It clarifies the usage of CPGFImage::Close() and CPGFImage::Destroy() by deletion of
Close(). Several reading operations can be performed in the following way:
Open(), Read(), GetBitmap(), ResetStreamPos(), Read(), GetBitmap(), ResetStreamPos(), ...
Calling Destroy() frees all allocated ressources and reinitializes the object to the
same state as the constructor does. This allows the reuse of the CPGFImage object for
encoding and decoding:
SetHeader(), ImportBitmap(), Write(), ResetStreamPos(), Destroy(), Open(), Read(), GetBitmap()
3. Caching or skipping of user data (meta data) while opening a PGF image can be controlled
by a new UserdataPolicy in ConfigureDecoder().
Version 7.15.25, (Sat, 20 June 2015)
------------------------------------
1. This new version is a replacement of version 6.14.12.
In case you use the ROI decoding, we strongly encourage using version 6.15.25 instead of an older version.
2. This version fixes some decoder bugs only seen in ROI decoding.
ROI decoding is now also supported for Bitmap and RGB12 image modes.
3. This version introduces a new and more efficient data format for binary images (bitmaps).
The new format allows ROI decoding.
The decoder supports both the old and the new format, but ROI decoding works only with the new format.
4. The two reserverd bytes in PGFHeader are now used for a more detailled PGF version number.
5. The Visual Studio project files are in the VS12 format.
Version 6.14.12, (Wed, 9 April 2014)
------------------------------------
1. The new version is a minor update of version 6.12.24.
2. It mainly contains some fixes of memory leaks in the OpenMP part and some improvements suggested by cppcheck and Coverity.
3. The Visual Studio project files are in the VS11 format.
Version 6.12.24, (Thu, 14 June 2012)
------------------------------------
1. The new version is a replacement of version 6.11.42.
In case you use the ROI encoding scheme, we strongly encourage using version 6.12.24 instead of version 6.11.42.
2. This version fixes some decoder bugs, sometimes seen in ROI decoding.
3. This version allows a simpler user-data handling, especially for uncached metadata. The following two methods
in the class PGFimage are designed for this purpose:
GetUserDataPos() returns in an opened PGF image the stream position of the user data area.
WriteImage() encodes and writes the image at the current stream position. This method is called after
WriteHeader(). In case you want to write uncached metadata into the stream, then do that after WriteHeader()
and just before WriteImage(). If you are not interested in writing uncached metadata, then you usually use
Write() instead of WriteImage(). WriteHeader() and WriteImage() are called inside of Write().
Version 6.11.42, (Sun, 23 Oct 2011)
-----------------------------------
1. The new version is a replacement of version 6.11.24.
We strongly encourage using version 6.11.42 instead of version 6.11.24.
2. This version fixes some decoder bugs, only seen in lossless compression of
large images.
3. The rarely used, but sometimes misused, background information (3 Bytes)
in the PGFHeader has been replaced by
UINT8 usedBitsPerChannel; // number of used bits per channel
// in 16- and 32-bit per channel modes
UINT8 reserved1, reserved2; // not used
The value usedBitsPerChannel is helpful in case you have more than 8 (16) but
less than 16 (32) significant bits per channel, stored in the most
significant bits of a pixel. For example, you have a grayscale image with 14
bit significant data per pixel stored in the ImageModeGray16 pixel format. In
case you have left shifted the 14 bits to be the most significant 14 bits,
then you should set usedBitsPerChannel=14. This will increase the compression
ratio without any drawbacks, because the 14 bits are internally right shifted.
On the other side, if the 14 bits are the least significant bits in
your 16 bit pixel format, then you shoulden’t set usedBitsPerChannel. It will
be automatically set to 16, but this is no problem, since the not used most
significant bits per pixel are never coded at all. So, in both cases the same
compression ratio will result.

@ -0,0 +1,388 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $
* $Revision: 229 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file Subband.cpp
/// @brief PGF wavelet subband class implementation
/// @author C. Stamm
#include "Subband.h"
#include "Encoder.h"
#include "Decoder.h"
/////////////////////////////////////////////////////////////////////
// Default constructor
CSubband::CSubband()
: m_width(0)
, m_height(0)
, m_size(0)
, m_level(0)
, m_orientation(LL)
, m_dataPos(0)
, m_data(0)
#ifdef __PGFROISUPPORT__
, m_nTiles(0)
#endif
{
}
/////////////////////////////////////////////////////////////////////
// Destructor
CSubband::~CSubband() {
FreeMemory();
}
/////////////////////////////////////////////////////////////////////
// Initialize subband parameters
void CSubband::Initialize(UINT32 width, UINT32 height, int level, Orientation orient) {
m_width = width;
m_height = height;
m_size = m_width*m_height;
m_level = level;
m_orientation = orient;
m_data = 0;
m_dataPos = 0;
#ifdef __PGFROISUPPORT__
m_ROI.left = 0;
m_ROI.top = 0;
m_ROI.right = m_width;
m_ROI.bottom = m_height;
m_nTiles = 0;
#endif
}
/////////////////////////////////////////////////////////////////////
// Allocate a memory buffer to store all wavelet coefficients of this subband.
// @return True if the allocation works without any problems
bool CSubband::AllocMemory() {
UINT32 oldSize = m_size;
#ifdef __PGFROISUPPORT__
m_size = BufferWidth()*m_ROI.Height();
#endif
ASSERT(m_size > 0);
if (m_data) {
if (oldSize >= m_size) {
return true;
} else {
delete[] m_data;
m_data = new(std::nothrow) DataT[m_size];
return (m_data != 0);
}
} else {
m_data = new(std::nothrow) DataT[m_size];
return (m_data != 0);
}
}
/////////////////////////////////////////////////////////////////////
// Delete the memory buffer of this subband.
void CSubband::FreeMemory() {
if (m_data) {
delete[] m_data; m_data = 0;
}
}
/////////////////////////////////////////////////////////////////////
// Perform subband quantization with given quantization parameter.
// A scalar quantization (with dead-zone) is used. A large quantization value
// results in strong quantization and therefore in big quality loss.
// @param quantParam A quantization parameter (larger or equal to 0)
void CSubband::Quantize(int quantParam) {
if (m_orientation == LL) {
quantParam -= (m_level + 1);
// uniform rounding quantization
if (quantParam > 0) {
quantParam--;
for (UINT32 i=0; i < m_size; i++) {
if (m_data[i] < 0) {
m_data[i] = -(((-m_data[i] >> quantParam) + 1) >> 1);
} else {
m_data[i] = ((m_data[i] >> quantParam) + 1) >> 1;
}
}
}
} else {
if (m_orientation == HH) {
quantParam -= (m_level - 1);
} else {
quantParam -= m_level;
}
// uniform deadzone quantization
if (quantParam > 0) {
int threshold = ((1 << quantParam) * 7)/5; // good value
quantParam--;
for (UINT32 i=0; i < m_size; i++) {
if (m_data[i] < -threshold) {
m_data[i] = -(((-m_data[i] >> quantParam) + 1) >> 1);
} else if (m_data[i] > threshold) {
m_data[i] = ((m_data[i] >> quantParam) + 1) >> 1;
} else {
m_data[i] = 0;
}
}
}
}
}
//////////////////////////////////////////////////////////////////////
/// Perform subband dequantization with given quantization parameter.
/// A scalar quantization (with dead-zone) is used. A large quantization value
/// results in strong quantization and therefore in big quality loss.
/// @param quantParam A quantization parameter (larger or equal to 0)
void CSubband::Dequantize(int quantParam) {
if (m_orientation == LL) {
quantParam -= m_level + 1;
} else if (m_orientation == HH) {
quantParam -= m_level - 1;
} else {
quantParam -= m_level;
}
if (quantParam > 0) {
for (UINT32 i=0; i < m_size; i++) {
m_data[i] <<= quantParam;
}
}
}
/////////////////////////////////////////////////////////////////////
/// Extracts a rectangular subregion of this subband.
/// Write wavelet coefficients into buffer.
/// It might throw an IOException.
/// @param encoder An encoder instance
/// @param tile True if just a rectangular region is extracted, false if the entire subband is extracted.
/// @param tileX Tile index in x-direction
/// @param tileY Tile index in y-direction
void CSubband::ExtractTile(CEncoder& encoder, bool tile /*= false*/, UINT32 tileX /*= 0*/, UINT32 tileY /*= 0*/) {
#ifdef __PGFROISUPPORT__
if (tile) {
// compute tile position and size
UINT32 xPos, yPos, w, h;
TilePosition(tileX, tileY, xPos, yPos, w, h);
// write values into buffer using partitiong scheme
encoder.Partition(this, w, h, xPos + yPos*m_width, m_width);
} else
#endif
{
(void)tileX; (void)tileY; (void)tile; // prevents from unreferenced formal parameter warning
// write values into buffer using partitiong scheme
encoder.Partition(this, m_width, m_height, 0, m_width);
}
}
/////////////////////////////////////////////////////////////////////
/// Decoding and dequantization of this subband.
/// It might throw an IOException.
/// @param decoder A decoder instance
/// @param quantParam Dequantization value
/// @param tile True if just a rectangular region is placed, false if the entire subband is placed.
/// @param tileX Tile index in x-direction
/// @param tileY Tile index in y-direction
void CSubband::PlaceTile(CDecoder& decoder, int quantParam, bool tile /*= false*/, UINT32 tileX /*= 0*/, UINT32 tileY /*= 0*/) {
// allocate memory
if (!AllocMemory()) ReturnWithError(InsufficientMemory);
// correct quantParam with normalization factor
if (m_orientation == LL) {
quantParam -= m_level + 1;
} else if (m_orientation == HH) {
quantParam -= m_level - 1;
} else {
quantParam -= m_level;
}
if (quantParam < 0) quantParam = 0;
#ifdef __PGFROISUPPORT__
if (tile) {
UINT32 xPos, yPos, w, h;
// compute tile position and size
TilePosition(tileX, tileY, xPos, yPos, w, h);
ASSERT(xPos >= m_ROI.left && yPos >= m_ROI.top);
decoder.Partition(this, quantParam, w, h, (xPos - m_ROI.left) + (yPos - m_ROI.top)*BufferWidth(), BufferWidth());
} else
#endif
{
(void)tileX; (void)tileY; (void)tile; // prevents from unreferenced formal parameter warning
// read values into buffer using partitiong scheme
decoder.Partition(this, quantParam, m_width, m_height, 0, m_width);
}
}
#ifdef __PGFROISUPPORT__
//////////////////////////////////////////////////////////////////////
/// Set ROI
void CSubband::SetAlignedROI(const PGFRect& roi) {
ASSERT(roi.left <= m_width);
ASSERT(roi.top <= m_height);
m_ROI = roi;
if (m_ROI.right > m_width) m_ROI.right = m_width;
if (m_ROI.bottom > m_height) m_ROI.bottom = m_height;
}
//////////////////////////////////////////////////////////////////////
/// Compute tile position and size.
/// @param tileX Tile index in x-direction
/// @param tileY Tile index in y-direction
/// @param xPos [out] Offset to left
/// @param yPos [out] Offset to top
/// @param w [out] Tile width
/// @param h [out] Tile height
void CSubband::TilePosition(UINT32 tileX, UINT32 tileY, UINT32& xPos, UINT32& yPos, UINT32& w, UINT32& h) const {
ASSERT(tileX < m_nTiles); ASSERT(tileY < m_nTiles);
// example
// band = HH, w = 30, ldTiles = 2 -> 4 tiles in a row/column
// --> tile widths
// 8 7 8 7
//
// tile partitioning scheme
// 0 1 2 3
// 4 5 6 7
// 8 9 A B
// C D E F
UINT32 nTiles = m_nTiles;
UINT32 m;
UINT32 left = 0, right = nTiles;
UINT32 top = 0, bottom = nTiles;
xPos = 0;
yPos = 0;
w = m_width;
h = m_height;
while (nTiles > 1) {
// compute xPos and w with binary search
m = left + ((right - left) >> 1);
if (tileX >= m) {
xPos += (w + 1) >> 1;
w >>= 1;
left = m;
} else {
w = (w + 1) >> 1;
right = m;
}
// compute yPos and h with binary search
m = top + ((bottom - top) >> 1);
if (tileY >= m) {
yPos += (h + 1) >> 1;
h >>= 1;
top = m;
} else {
h = (h + 1) >> 1;
bottom = m;
}
nTiles >>= 1;
}
ASSERT(xPos < m_width && (xPos + w <= m_width));
ASSERT(yPos < m_height && (yPos + h <= m_height));
}
//////////////////////////////////////////////////////////////////////
/// Compute tile index and extrem position (x,y) of given position (xPos, yPos).
void CSubband::TileIndex(bool topLeft, UINT32 xPos, UINT32 yPos, UINT32& tileX, UINT32& tileY, UINT32& x, UINT32& y) const {
UINT32 m;
UINT32 left = 0, right = m_width;
UINT32 top = 0, bottom = m_height;
UINT32 nTiles = m_nTiles;
if (xPos > m_width) xPos = m_width;
if (yPos > m_height) yPos = m_height;
if (topLeft) {
// compute tileX with binary search
tileX = 0;
while (nTiles > 1) {
nTiles >>= 1;
m = left + ((right - left + 1) >> 1);
if (xPos < m) {
// exclusive m
right = m;
} else {
tileX += nTiles;
left = m;
}
}
x = left;
ASSERT(tileX >= 0 && tileX < m_nTiles);
// compute tileY with binary search
nTiles = m_nTiles;
tileY = 0;
while (nTiles > 1) {
nTiles >>= 1;
m = top + ((bottom - top + 1) >> 1);
if (yPos < m) {
// exclusive m
bottom = m;
} else {
tileY += nTiles;
top = m;
}
}
y = top;
ASSERT(tileY >= 0 && tileY < m_nTiles);
} else {
// compute tileX with binary search
tileX = 1;
while (nTiles > 1) {
nTiles >>= 1;
m = left + ((right - left + 1) >> 1);
if (xPos <= m) {
// inclusive m
right = m;
} else {
tileX += nTiles;
left = m;
}
}
x = right;
ASSERT(tileX > 0 && tileX <= m_nTiles);
// compute tileY with binary search
nTiles = m_nTiles;
tileY = 1;
while (nTiles > 1) {
nTiles >>= 1;
m = top + ((bottom - top + 1) >> 1);
if (yPos <= m) {
// inclusive m
bottom = m;
} else {
tileY += nTiles;
top = m;
}
}
y = bottom;
ASSERT(tileY > 0 && tileY <= m_nTiles);
}
}
#endif

@ -0,0 +1,180 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $
* $Revision: 229 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file Subband.h
/// @brief PGF wavelet subband class
/// @author C. Stamm
#ifndef PGF_SUBBAND_H
#define PGF_SUBBAND_H
#include "PGFtypes.h"
class CEncoder;
class CDecoder;
class CRoiIndices;
//////////////////////////////////////////////////////////////////////
/// PGF wavelet channel subband class.
/// @author C. Stamm, R. Spuler
/// @brief Wavelet channel class
class CSubband {
friend class CWaveletTransform;
friend class CRoiIndices;
public:
//////////////////////////////////////////////////////////////////////
/// Standard constructor.
CSubband();
//////////////////////////////////////////////////////////////////////
/// Destructor.
~CSubband();
//////////////////////////////////////////////////////////////////////
/// Allocate a memory buffer to store all wavelet coefficients of this subband.
/// @return True if the allocation did work without any problems
bool AllocMemory();
//////////////////////////////////////////////////////////////////////
/// Delete the memory buffer of this subband.
void FreeMemory();
/////////////////////////////////////////////////////////////////////
/// Extracts a rectangular subregion of this subband.
/// Write wavelet coefficients into buffer.
/// It might throw an IOException.
/// @param encoder An encoder instance
/// @param tile True if just a rectangular region is extracted, false if the entire subband is extracted.
/// @param tileX Tile index in x-direction
/// @param tileY Tile index in y-direction
void ExtractTile(CEncoder& encoder, bool tile = false, UINT32 tileX = 0, UINT32 tileY = 0);
/////////////////////////////////////////////////////////////////////
/// Decoding and dequantization of this subband.
/// It might throw an IOException.
/// @param decoder A decoder instance
/// @param quantParam Dequantization value
/// @param tile True if just a rectangular region is placed, false if the entire subband is placed.
/// @param tileX Tile index in x-direction
/// @param tileY Tile index in y-direction
void PlaceTile(CDecoder& decoder, int quantParam, bool tile = false, UINT32 tileX = 0, UINT32 tileY = 0);
//////////////////////////////////////////////////////////////////////
/// Perform subband quantization with given quantization parameter.
/// A scalar quantization (with dead-zone) is used. A large quantization value
/// results in strong quantization and therefore in big quality loss.
/// @param quantParam A quantization parameter (larger or equal to 0)
void Quantize(int quantParam);
//////////////////////////////////////////////////////////////////////
/// Perform subband dequantization with given quantization parameter.
/// A scalar quantization (with dead-zone) is used. A large quantization value
/// results in strong quantization and therefore in big quality loss.
/// @param quantParam A quantization parameter (larger or equal to 0)
void Dequantize(int quantParam);
//////////////////////////////////////////////////////////////////////
/// Store wavelet coefficient in subband at given position.
/// @param pos A subband position (>= 0)
/// @param v A wavelet coefficient
void SetData(UINT32 pos, DataT v) { ASSERT(pos < m_size); m_data[pos] = v; }
//////////////////////////////////////////////////////////////////////
/// Get a pointer to an array of all wavelet coefficients of this subband.
/// @return Pointer to array of wavelet coefficients
DataT* GetBuffer() { return m_data; }
//////////////////////////////////////////////////////////////////////
/// Return wavelet coefficient at given position.
/// @param pos A subband position (>= 0)
/// @return Wavelet coefficient
DataT GetData(UINT32 pos) const { ASSERT(pos < m_size); return m_data[pos]; }
//////////////////////////////////////////////////////////////////////
/// Return level of this subband.
/// @return Level of this subband
int GetLevel() const { return m_level; }
//////////////////////////////////////////////////////////////////////
/// Return height of this subband.
/// @return Height of this subband (in pixels)
int GetHeight() const { return m_height; }
//////////////////////////////////////////////////////////////////////
/// Return width of this subband.
/// @return Width of this subband (in pixels)
int GetWidth() const { return m_width; }
//////////////////////////////////////////////////////////////////////
/// Return orientation of this subband.
/// LL LH
/// HL HH
/// @return Orientation of this subband (LL, HL, LH, HH)
Orientation GetOrientation() const { return m_orientation; }
#ifdef __PGFROISUPPORT__
/////////////////////////////////////////////////////////////////////
/// Set data buffer position to given position + one row.
/// @param pos Given position
void IncBuffRow(UINT32 pos) { m_dataPos = pos + BufferWidth(); }
#endif
private:
void Initialize(UINT32 width, UINT32 height, int level, Orientation orient);
void WriteBuffer(DataT val) { ASSERT(m_dataPos < m_size); m_data[m_dataPos++] = val; }
void SetBuffer(DataT* b) { ASSERT(b); m_data = b; }
DataT ReadBuffer() { ASSERT(m_dataPos < m_size); return m_data[m_dataPos++]; }
UINT32 GetBuffPos() const { return m_dataPos; }
#ifdef __PGFROISUPPORT__
UINT32 BufferWidth() const { return m_ROI.Width(); }
void TilePosition(UINT32 tileX, UINT32 tileY, UINT32& left, UINT32& top, UINT32& w, UINT32& h) const;
void TileIndex(bool topLeft, UINT32 xPos, UINT32 yPos, UINT32& tileX, UINT32& tileY, UINT32& x, UINT32& y) const;
const PGFRect& GetAlignedROI() const { return m_ROI; }
void SetNTiles(UINT32 nTiles) { m_nTiles = nTiles; }
void SetAlignedROI(const PGFRect& roi);
void InitBuffPos(UINT32 left = 0, UINT32 top = 0) { m_dataPos = top*BufferWidth() + left; ASSERT(m_dataPos < m_size); }
#else
void InitBuffPos() { m_dataPos = 0; }
#endif
private:
UINT32 m_width; ///< width in pixels
UINT32 m_height; ///< height in pixels
UINT32 m_size; ///< size of data buffer m_data
int m_level; ///< recursion level
Orientation m_orientation; ///< 0=LL, 1=HL, 2=LH, 3=HH L=lowpass filtered, H=highpass filterd
UINT32 m_dataPos; ///< current position in m_data
DataT* m_data; ///< buffer
#ifdef __PGFROISUPPORT__
PGFRect m_ROI; ///< region of interest (block aligned)
UINT32 m_nTiles; ///< number of tiles in one dimension in this subband
#endif
};
#endif //PGF_SUBBAND_H

@ -0,0 +1,570 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2006-05-18 16:03:32 +0200 (Do, 18 Mai 2006) $
* $Revision: 194 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file WaveletTransform.cpp
/// @brief PGF wavelet transform class implementation
/// @author C. Stamm
#include "WaveletTransform.h"
#define c1 1 // best value 1
#define c2 2 // best value 2
//////////////////////////////////////////////////////////////////////////
// Constructor: Constructs a wavelet transform pyramid of given size and levels.
// @param width The width of the original image (at level 0) in pixels
// @param height The height of the original image (at level 0) in pixels
// @param levels The number of levels (>= 0)
// @param data Input data of subband LL at level 0
CWaveletTransform::CWaveletTransform(UINT32 width, UINT32 height, int levels, DataT* data)
:
#ifdef __PGFROISUPPORT__
m_indices(nullptr),
#endif
m_nLevels(levels + 1) // m_nLevels in CPGFImage determines the number of FWT steps; this.m_nLevels determines the number subband-planes
, m_subband(nullptr)
{
ASSERT(m_nLevels > 0 && m_nLevels <= MaxLevel + 1);
InitSubbands(width, height, data);
}
/////////////////////////////////////////////////////////////////////
// Initialize size subbands on all levels
void CWaveletTransform::InitSubbands(UINT32 width, UINT32 height, DataT* data) {
if (m_subband) Destroy();
// create subbands
m_subband = new CSubband[m_nLevels][NSubbands];
// init subbands
UINT32 loWidth = width;
UINT32 hiWidth = width;
UINT32 loHeight = height;
UINT32 hiHeight = height;
for (int level = 0; level < m_nLevels; level++) {
m_subband[level][LL].Initialize(loWidth, loHeight, level, LL); // LL
m_subband[level][HL].Initialize(hiWidth, loHeight, level, HL); // HL
m_subband[level][LH].Initialize(loWidth, hiHeight, level, LH); // LH
m_subband[level][HH].Initialize(hiWidth, hiHeight, level, HH); // HH
hiWidth = loWidth >> 1; hiHeight = loHeight >> 1;
loWidth = (loWidth + 1) >> 1; loHeight = (loHeight + 1) >> 1;
}
if (data) {
m_subband[0][LL].SetBuffer(data);
}
}
//////////////////////////////////////////////////////////////////////////
// Compute fast forward wavelet transform of LL subband at given level and
// stores result in all 4 subbands of level + 1.
// Wavelet transform used in writing a PGF file
// Forward Transform of srcBand and split and store it into subbands on destLevel
// low pass filter at even positions: 1/8[-1, 2, (6), 2, -1]
// high pass filter at odd positions: 1/4[-2, (4), -2]
// @param level A wavelet transform pyramid level (>= 0 && < Levels())
// @param quant A quantization value (linear scalar quantization)
// @return error in case of a memory allocation problem
OSError CWaveletTransform::ForwardTransform(int level, int quant) {
ASSERT(level >= 0 && level < m_nLevels - 1);
const int destLevel = level + 1;
ASSERT(m_subband[destLevel]);
CSubband* srcBand = &m_subband[level][LL]; ASSERT(srcBand);
const UINT32 width = srcBand->GetWidth();
const UINT32 height = srcBand->GetHeight();
DataT* src = srcBand->GetBuffer(); ASSERT(src);
DataT *row0, *row1, *row2, *row3;
// Allocate memory for next transform level
for (int i=0; i < NSubbands; i++) {
if (!m_subband[destLevel][i].AllocMemory()) return InsufficientMemory;
}
if (height >= FilterSize) { // changed from FilterSizeH to FilterSize
// top border handling
row0 = src; row1 = row0 + width; row2 = row1 + width;
ForwardRow(row0, width);
ForwardRow(row1, width);
ForwardRow(row2, width);
for (UINT32 k=0; k < width; k++) {
row1[k] -= ((row0[k] + row2[k] + c1) >> 1); // high pass
row0[k] += ((row1[k] + c1) >> 1); // low pass
}
InterleavedToSubbands(destLevel, row0, row1, width);
row0 = row1; row1 = row2; row2 += width; row3 = row2 + width;
// middle part
for (UINT32 i=3; i < height-1; i += 2) {
ForwardRow(row2, width);
ForwardRow(row3, width);
for (UINT32 k=0; k < width; k++) {
row2[k] -= ((row1[k] + row3[k] + c1) >> 1); // high pass filter
row1[k] += ((row0[k] + row2[k] + c2) >> 2); // low pass filter
}
InterleavedToSubbands(destLevel, row1, row2, width);
row0 = row2; row1 = row3; row2 = row3 + width; row3 = row2 + width;
}
// bottom border handling
if (height & 1) {
for (UINT32 k=0; k < width; k++) {
row1[k] += ((row0[k] + c1) >> 1); // low pass
}
InterleavedToSubbands(destLevel, row1, nullptr, width);
row0 = row1; row1 += width;
} else {
ForwardRow(row2, width);
for (UINT32 k=0; k < width; k++) {
row2[k] -= row1[k]; // high pass
row1[k] += ((row0[k] + row2[k] + c2) >> 2); // low pass
}
InterleavedToSubbands(destLevel, row1, row2, width);
row0 = row1; row1 = row2; row2 += width;
}
} else {
// if height is too small
row0 = src; row1 = row0 + width;
// first part
for (UINT32 k=0; k < height; k += 2) {
ForwardRow(row0, width);
ForwardRow(row1, width);
InterleavedToSubbands(destLevel, row0, row1, width);
row0 += width << 1; row1 += width << 1;
}
// bottom
if (height & 1) {
InterleavedToSubbands(destLevel, row0, nullptr, width);
}
}
if (quant > 0) {
// subband quantization (without LL)
for (int i=1; i < NSubbands; i++) {
m_subband[destLevel][i].Quantize(quant);
}
// LL subband quantization
if (destLevel == m_nLevels - 1) {
m_subband[destLevel][LL].Quantize(quant);
}
}
// free source band
srcBand->FreeMemory();
return NoError;
}
//////////////////////////////////////////////////////////////
// Forward transform one row
// low pass filter at even positions: 1/8[-1, 2, (6), 2, -1]
// high pass filter at odd positions: 1/4[-2, (4), -2]
void CWaveletTransform::ForwardRow(DataT* src, UINT32 width) {
if (width >= FilterSize) {
UINT32 i = 3;
// left border handling
src[1] -= ((src[0] + src[2] + c1) >> 1); // high pass
src[0] += ((src[1] + c1) >> 1); // low pass
// middle part
for (; i < width-1; i += 2) {
src[i] -= ((src[i-1] + src[i+1] + c1) >> 1); // high pass
src[i-1] += ((src[i-2] + src[i] + c2) >> 2); // low pass
}
// right border handling
if (width & 1) {
src[i-1] += ((src[i-2] + c1) >> 1); // low pass
} else {
src[i] -= src[i-1]; // high pass
src[i-1] += ((src[i-2] + src[i] + c2) >> 2); // low pass
}
}
}
/////////////////////////////////////////////////////////////////
// Copy transformed and interleaved (L,H,L,H,...) rows loRow and hiRow to subbands LL,HL,LH,HH
void CWaveletTransform::InterleavedToSubbands(int destLevel, DataT* loRow, DataT* hiRow, UINT32 width) {
const UINT32 wquot = width >> 1;
const bool wrem = (width & 1);
CSubband &ll = m_subband[destLevel][LL], &hl = m_subband[destLevel][HL];
CSubband &lh = m_subband[destLevel][LH], &hh = m_subband[destLevel][HH];
if (hiRow) {
for (UINT32 i=0; i < wquot; i++) {
ll.WriteBuffer(*loRow++); // first access, than increment
hl.WriteBuffer(*loRow++);
lh.WriteBuffer(*hiRow++); // first access, than increment
hh.WriteBuffer(*hiRow++);
}
if (wrem) {
ll.WriteBuffer(*loRow);
lh.WriteBuffer(*hiRow);
}
} else {
for (UINT32 i=0; i < wquot; i++) {
ll.WriteBuffer(*loRow++); // first access, than increment
hl.WriteBuffer(*loRow++);
}
if (wrem) ll.WriteBuffer(*loRow);
}
}
//////////////////////////////////////////////////////////////////////////
// Compute fast inverse wavelet transform of all 4 subbands of given level and
// stores result in LL subband of level - 1.
// Inverse wavelet transform used in reading a PGF file
// Inverse Transform srcLevel and combine to destBand
// low-pass coefficients at even positions, high-pass coefficients at odd positions
// inverse filter for even positions: 1/4[-1, (4), -1]
// inverse filter for odd positions: 1/8[-1, 4, (6), 4, -1]
// @param srcLevel A wavelet transform pyramid level (> 0 && <= Levels())
// @param w [out] A pointer to the returned width of subband LL (in pixels)
// @param h [out] A pointer to the returned height of subband LL (in pixels)
// @param data [out] A pointer to the returned array of image data
// @return error in case of a memory allocation problem
OSError CWaveletTransform::InverseTransform(int srcLevel, UINT32* w, UINT32* h, DataT** data) {
ASSERT(srcLevel > 0 && srcLevel < m_nLevels);
const int destLevel = srcLevel - 1;
ASSERT(m_subband[destLevel]);
CSubband* destBand = &m_subband[destLevel][LL];
UINT32 width, height;
// allocate memory for the results of the inverse transform
if (!destBand->AllocMemory()) return InsufficientMemory;
DataT *origin = destBand->GetBuffer(), *row0, *row1, *row2, *row3;
#ifdef __PGFROISUPPORT__
PGFRect destROI = destBand->GetAlignedROI();
const UINT32 destWidth = destROI.Width(); // destination buffer width
const UINT32 destHeight = destROI.Height(); // destination buffer height
width = destWidth; // destination working width
height = destHeight; // destination working height
// update destination ROI
if (destROI.top & 1) {
destROI.top++;
origin += destWidth;
height--;
}
if (destROI.left & 1) {
destROI.left++;
origin++;
width--;
}
// init source buffer position
const UINT32 leftD = destROI.left >> 1;
const UINT32 left0 = m_subband[srcLevel][LL].GetAlignedROI().left;
const UINT32 left1 = m_subband[srcLevel][HL].GetAlignedROI().left;
const UINT32 topD = destROI.top >> 1;
const UINT32 top0 = m_subband[srcLevel][LL].GetAlignedROI().top;
const UINT32 top1 = m_subband[srcLevel][LH].GetAlignedROI().top;
ASSERT(m_subband[srcLevel][LH].GetAlignedROI().left == left0);
ASSERT(m_subband[srcLevel][HH].GetAlignedROI().left == left1);
ASSERT(m_subband[srcLevel][HL].GetAlignedROI().top == top0);
ASSERT(m_subband[srcLevel][HH].GetAlignedROI().top == top1);
UINT32 srcOffsetX[2] = { 0, 0 };
UINT32 srcOffsetY[2] = { 0, 0 };
if (leftD >= __max(left0, left1)) {
srcOffsetX[0] = leftD - left0;
srcOffsetX[1] = leftD - left1;
} else {
if (left0 <= left1) {
const UINT32 dx = (left1 - leftD) << 1;
destROI.left += dx;
origin += dx;
width -= dx;
srcOffsetX[0] = left1 - left0;
} else {
const UINT32 dx = (left0 - leftD) << 1;
destROI.left += dx;
origin += dx;
width -= dx;
srcOffsetX[1] = left0 - left1;
}
}
if (topD >= __max(top0, top1)) {
srcOffsetY[0] = topD - top0;
srcOffsetY[1] = topD - top1;
} else {
if (top0 <= top1) {
const UINT32 dy = (top1 - topD) << 1;
destROI.top += dy;
origin += dy*destWidth;
height -= dy;
srcOffsetY[0] = top1 - top0;
} else {
const UINT32 dy = (top0 - topD) << 1;
destROI.top += dy;
origin += dy*destWidth;
height -= dy;
srcOffsetY[1] = top0 - top1;
}
}
m_subband[srcLevel][LL].InitBuffPos(srcOffsetX[0], srcOffsetY[0]);
m_subband[srcLevel][HL].InitBuffPos(srcOffsetX[1], srcOffsetY[0]);
m_subband[srcLevel][LH].InitBuffPos(srcOffsetX[0], srcOffsetY[1]);
m_subband[srcLevel][HH].InitBuffPos(srcOffsetX[1], srcOffsetY[1]);
#else
width = destBand->GetWidth();
height = destBand->GetHeight();
PGFRect destROI(0, 0, width, height);
const UINT32 destWidth = width; // destination buffer width
const UINT32 destHeight = height; // destination buffer height
// init source buffer position
for (int i = 0; i < NSubbands; i++) {
m_subband[srcLevel][i].InitBuffPos();
}
#endif
if (destHeight >= FilterSize) { // changed from FilterSizeH to FilterSize
// top border handling
row0 = origin; row1 = row0 + destWidth;
SubbandsToInterleaved(srcLevel, row0, row1, width);
for (UINT32 k = 0; k < width; k++) {
row0[k] -= ((row1[k] + c1) >> 1); // even
}
// middle part
row2 = row1 + destWidth; row3 = row2 + destWidth;
for (UINT32 i = destROI.top + 2; i < destROI.bottom - 1; i += 2) {
SubbandsToInterleaved(srcLevel, row2, row3, width);
for (UINT32 k = 0; k < width; k++) {
row2[k] -= ((row1[k] + row3[k] + c2) >> 2); // even
row1[k] += ((row0[k] + row2[k] + c1) >> 1); // odd
}
InverseRow(row0, width);
InverseRow(row1, width);
row0 = row2; row1 = row3; row2 = row1 + destWidth; row3 = row2 + destWidth;
}
// bottom border handling
if (height & 1) {
SubbandsToInterleaved(srcLevel, row2, nullptr, width);
for (UINT32 k = 0; k < width; k++) {
row2[k] -= ((row1[k] + c1) >> 1); // even
row1[k] += ((row0[k] + row2[k] + c1) >> 1); // odd
}
InverseRow(row0, width);
InverseRow(row1, width);
InverseRow(row2, width);
row0 = row1; row1 = row2; row2 += destWidth;
} else {
for (UINT32 k = 0; k < width; k++) {
row1[k] += row0[k];
}
InverseRow(row0, width);
InverseRow(row1, width);
row0 = row1; row1 += destWidth;
}
} else {
// height is too small
row0 = origin; row1 = row0 + destWidth;
// first part
for (UINT32 k = 0; k < height; k += 2) {
SubbandsToInterleaved(srcLevel, row0, row1, width);
InverseRow(row0, width);
InverseRow(row1, width);
row0 += destWidth << 1; row1 += destWidth << 1;
}
// bottom
if (height & 1) {
SubbandsToInterleaved(srcLevel, row0, nullptr, width);
InverseRow(row0, width);
}
}
// free memory of the current srcLevel
for (int i = 0; i < NSubbands; i++) {
m_subband[srcLevel][i].FreeMemory();
}
// return info
*w = destWidth;
*h = destHeight;
*data = destBand->GetBuffer();
return NoError;
}
//////////////////////////////////////////////////////////////////////
// Inverse Wavelet Transform of one row
// low-pass coefficients at even positions, high-pass coefficients at odd positions
// inverse filter for even positions: 1/4[-1, (4), -1]
// inverse filter for odd positions: 1/8[-1, 4, (6), 4, -1]
void CWaveletTransform::InverseRow(DataT* dest, UINT32 width) {
if (width >= FilterSize) {
UINT32 i = 2;
// left border handling
dest[0] -= ((dest[1] + c1) >> 1); // even
// middle part
for (; i < width - 1; i += 2) {
dest[i] -= ((dest[i-1] + dest[i+1] + c2) >> 2); // even
dest[i-1] += ((dest[i-2] + dest[i] + c1) >> 1); // odd
}
// right border handling
if (width & 1) {
dest[i] -= ((dest[i-1] + c1) >> 1); // even
dest[i-1] += ((dest[i-2] + dest[i] + c1) >> 1); // odd
} else {
dest[i-1] += dest[i-2]; // odd
}
}
}
///////////////////////////////////////////////////////////////////
// Copy transformed coefficients from subbands LL,HL,LH,HH to interleaved format (L,H,L,H,...)
void CWaveletTransform::SubbandsToInterleaved(int srcLevel, DataT* loRow, DataT* hiRow, UINT32 width) {
const UINT32 wquot = width >> 1;
const bool wrem = (width & 1);
CSubband &ll = m_subband[srcLevel][LL], &hl = m_subband[srcLevel][HL];
CSubband &lh = m_subband[srcLevel][LH], &hh = m_subband[srcLevel][HH];
if (hiRow) {
#ifdef __PGFROISUPPORT__
const bool storePos = wquot < ll.BufferWidth();
UINT32 llPos = 0, hlPos = 0, lhPos = 0, hhPos = 0;
if (storePos) {
// save current src buffer positions
llPos = ll.GetBuffPos();
hlPos = hl.GetBuffPos();
lhPos = lh.GetBuffPos();
hhPos = hh.GetBuffPos();
}
#endif
for (UINT32 i=0; i < wquot; i++) {
*loRow++ = ll.ReadBuffer();// first access, than increment
*loRow++ = hl.ReadBuffer();// first access, than increment
*hiRow++ = lh.ReadBuffer();// first access, than increment
*hiRow++ = hh.ReadBuffer();// first access, than increment
}
if (wrem) {
*loRow++ = ll.ReadBuffer();// first access, than increment
*hiRow++ = lh.ReadBuffer();// first access, than increment
}
#ifdef __PGFROISUPPORT__
if (storePos) {
// increment src buffer positions
ll.IncBuffRow(llPos);
hl.IncBuffRow(hlPos);
lh.IncBuffRow(lhPos);
hh.IncBuffRow(hhPos);
}
#endif
} else {
#ifdef __PGFROISUPPORT__
const bool storePos = wquot < ll.BufferWidth();
UINT32 llPos = 0, hlPos = 0;
if (storePos) {
// save current src buffer positions
llPos = ll.GetBuffPos();
hlPos = hl.GetBuffPos();
}
#endif
for (UINT32 i=0; i < wquot; i++) {
*loRow++ = ll.ReadBuffer();// first access, than increment
*loRow++ = hl.ReadBuffer();// first access, than increment
}
if (wrem) *loRow++ = ll.ReadBuffer();
#ifdef __PGFROISUPPORT__
if (storePos) {
// increment src buffer positions
ll.IncBuffRow(llPos);
hl.IncBuffRow(hlPos);
}
#endif
}
}
#ifdef __PGFROISUPPORT__
//////////////////////////////////////////////////////////////////////
/// Compute and store ROIs for nLevels
/// @param roi rectangular region of interest at level 0
void CWaveletTransform::SetROI(PGFRect roi) {
const UINT32 delta = (FilterSize >> 1) << m_nLevels;
// create tile indices
delete[] m_indices;
m_indices = new PGFRect[m_nLevels];
// enlarge rect: add margin
roi.left = (roi.left > delta) ? roi.left - delta : 0;
roi.top = (roi.top > delta) ? roi.top - delta : 0;
roi.right += delta;
roi.bottom += delta;
for (int l = 0; l < m_nLevels; l++) {
PGFRect alignedROI;
PGFRect& indices = m_indices[l];
UINT32 nTiles = GetNofTiles(l);
CSubband& subband = m_subband[l][LL];
// use roi to determine the necessary tile indices (for all subbands the same) and aligned ROI for LL subband
subband.SetNTiles(nTiles); // must be called before TileIndex()
subband.TileIndex(true, roi.left, roi.top, indices.left, indices.top, alignedROI.left, alignedROI.top);
subband.TileIndex(false, roi.right, roi.bottom, indices.right, indices.bottom, alignedROI.right, alignedROI.bottom);
subband.SetAlignedROI(alignedROI);
ASSERT(l == 0 ||
(m_indices[l-1].left >= 2*m_indices[l].left &&
m_indices[l-1].top >= 2*m_indices[l].top &&
m_indices[l-1].right <= 2*m_indices[l].right &&
m_indices[l-1].bottom <= 2*m_indices[l].bottom));
// determine aligned ROI of other three subbands
PGFRect aroi;
UINT32 w, h;
for (int b = 1; b < NSubbands; b++) {
CSubband& sb = m_subband[l][b];
sb.SetNTiles(nTiles); // must be called before TilePosition()
sb.TilePosition(indices.left, indices.top, aroi.left, aroi.top, w, h);
sb.TilePosition(indices.right - 1, indices.bottom - 1, aroi.right, aroi.bottom, w, h);
aroi.right += w;
aroi.bottom += h;
sb.SetAlignedROI(aroi);
}
// use aligned ROI of LL subband for next level
roi.left = alignedROI.left >> 1;
roi.top = alignedROI.top >> 1;
roi.right = (alignedROI.right + 1) >> 1;
roi.bottom = (alignedROI.bottom + 1) >> 1;
}
}
#endif // __PGFROISUPPORT__

@ -0,0 +1,163 @@
/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2006-05-18 16:03:32 +0200 (Do, 18 Mai 2006) $
* $Revision: 194 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file WaveletTransform.h
/// @brief PGF wavelet transform class
/// @author C. Stamm
#ifndef PGF_WAVELETTRANSFORM_H
#define PGF_WAVELETTRANSFORM_H
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
#endif
#if defined(__APPLE__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wignored-qualifiers"
#endif
#include "PGFtypes.h"
#include "Subband.h"
//////////////////////////////////////////////////////////////////////
// Constants
const UINT32 FilterSizeL = 5; ///< number of coefficients of the low pass filter
const UINT32 FilterSizeH = 3; ///< number of coefficients of the high pass filter
const UINT32 FilterSize = __max(FilterSizeL, FilterSizeH);
#ifdef __PGFROISUPPORT__
//////////////////////////////////////////////////////////////////////
/// PGF ROI and tile support. This is a helper class for CWaveletTransform.
/// @author C. Stamm
/// @brief ROI indices
class CRoiIndices {
};
#endif //__PGFROISUPPORT__
//////////////////////////////////////////////////////////////////////
/// PGF wavelet transform class.
/// @author C. Stamm, R. Spuler
/// @brief PGF wavelet transform
class CWaveletTransform {
friend class CSubband;
public:
//////////////////////////////////////////////////////////////////////
/// Constructor: Constructs a wavelet transform pyramid of given size and levels.
/// @param width The width of the original image (at level 0) in pixels
/// @param height The height of the original image (at level 0) in pixels
/// @param levels The number of levels (>= 0)
/// @param data Input data of subband LL at level 0
CWaveletTransform(UINT32 width, UINT32 height, int levels, DataT* data = nullptr);
//////////////////////////////////////////////////////////////////////
/// Destructor
~CWaveletTransform() { Destroy(); }
//////////////////////////////////////////////////////////////////////
/// Compute fast forward wavelet transform of LL subband at given level and
/// stores result in all 4 subbands of level + 1.
/// @param level A wavelet transform pyramid level (>= 0 && < Levels())
/// @param quant A quantization value (linear scalar quantization)
/// @return error in case of a memory allocation problem
OSError ForwardTransform(int level, int quant);
//////////////////////////////////////////////////////////////////////
/// Compute fast inverse wavelet transform of all 4 subbands of given level and
/// stores result in LL subband of level - 1.
/// @param level A wavelet transform pyramid level (> 0 && <= Levels())
/// @param width A pointer to the returned width of subband LL (in pixels)
/// @param height A pointer to the returned height of subband LL (in pixels)
/// @param data A pointer to the returned array of image data
/// @return error in case of a memory allocation problem
OSError InverseTransform(int level, UINT32* width, UINT32* height, DataT** data);
//////////////////////////////////////////////////////////////////////
/// Get pointer to one of the 4 subband at a given level.
/// @param level A wavelet transform pyramid level (>= 0 && <= Levels())
/// @param orientation A quarter of the subband (LL, LH, HL, HH)
CSubband* GetSubband(int level, Orientation orientation) {
ASSERT(level >= 0 && level < m_nLevels);
return &m_subband[level][orientation];
}
#ifdef __PGFROISUPPORT__
//////////////////////////////////////////////////////////////////////
/// Compute and store ROIs for nLevels
/// @param rect rectangular region of interest (ROI) at level 0
void SetROI(PGFRect rect);
//////////////////////////////////////////////////////////////////////
/// Checks the relevance of a given tile at given level.
/// @param level A valid subband level.
/// @param tileX x-index of the given tile
/// @param tileY y-index of the given tile
const bool TileIsRelevant(int level, UINT32 tileX, UINT32 tileY) const { ASSERT(m_indices); ASSERT(level >= 0 && level < m_nLevels); return m_indices[level].IsInside(tileX, tileY); }
//////////////////////////////////////////////////////////////////////
/// Get number of tiles in x- or y-direction at given level.
/// This number is independent of the given ROI.
/// @param level A valid subband level.
UINT32 GetNofTiles(int level) const { ASSERT(level >= 0 && level < m_nLevels); return 1 << (m_nLevels - level - 1); }
//////////////////////////////////////////////////////////////////////
/// Return ROI at given level.
/// @param level A valid subband level.
const PGFRect& GetAlignedROI(int level) const { return m_subband[level][LL].GetAlignedROI(); }
#endif // __PGFROISUPPORT__
private:
void Destroy() {
delete[] m_subband; m_subband = nullptr;
#ifdef __PGFROISUPPORT__
delete[] m_indices; m_indices = nullptr;
#endif
}
void InitSubbands(UINT32 width, UINT32 height, DataT* data);
void ForwardRow(DataT* buff, UINT32 width);
void InverseRow(DataT* buff, UINT32 width);
void InterleavedToSubbands(int destLevel, DataT* loRow, DataT* hiRow, UINT32 width);
void SubbandsToInterleaved(int srcLevel, DataT* loRow, DataT* hiRow, UINT32 width);
#ifdef __PGFROISUPPORT__
PGFRect *m_indices; ///< array of length m_nLevels of tile indices
#endif //__PGFROISUPPORT__
int m_nLevels; ///< number of LL levels: one more than header.nLevels in PGFimage
CSubband (*m_subband)[NSubbands]; ///< quadtree of subbands: LL HL LH HH
};
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#if defined(__APPLE__)
#pragma clang diagnostic pop
#endif
#endif //PGF_WAVELETTRANSFORM_H

@ -0,0 +1,471 @@
/* ============================================================
*
* This file is a part of digiKam project
* https://www.digikam.org
*
* Date : 2009-05-29
* Description : static helper methods for PGF image format.
*
* Copyright (C) 2009-2019 by Gilles Caulier <caulier dot gilles at gmail dot com>
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software Foundation;
* either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ============================================================ */
#include "pgfutils.h"
// C Ansi includes
extern "C"
{
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
}
#include <iostream>
// Qt includes
#include <QImage>
#include <QByteArray>
#include <QFile>
#include <qplatformdefs.h>
// Windows includes
#ifdef Q_OS_WIN32
# include <windows.h>
#endif
// LibPGF includes
#if defined(Q_CC_CLANG)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wkeyword-macro"
#endif
#include <PGFimage.h>
#if defined(Q_CC_CLANG)
# pragma clang diagnostic pop
#endif
// Private method
bool writePGFImageDataToStream(const QImage& image,
CPGFStream& stream,
int quality,
UINT32& nWrittenBytes,
bool verbose);
bool readPGFImageData(const QByteArray& data,
QImage& img,
bool verbose)
{
try
{
if (data.isEmpty())
{
std::cout << "PGFUtils: PGF image data to decode : size is null";
return false;
}
CPGFMemoryStream stream((UINT8*)data.data(), (size_t)data.size());
if (verbose)
std::cout << "PGFUtils: image data stream size is : " << stream.GetSize();
CPGFImage pgfImg;
// NOTE: see bug #273765 : Loading PGF thumbs with OpenMP support through a separated thread do not work properly with libppgf 6.11.24
pgfImg.ConfigureDecoder(false);
pgfImg.Open(&stream);
if (verbose)
std::cout << "PGFUtils: PGF image is open";
if (pgfImg.Channels() != 4)
{
std::cout << "PGFUtils: PGF channels not supported";
return false;
}
img = QImage(pgfImg.Width(), pgfImg.Height(), QImage::Format_ARGB32);
pgfImg.Read();
if (verbose)
std::cout << "PGFUtils: PGF image is read";
if (QSysInfo::ByteOrder == QSysInfo::BigEndian)
{
int map[] = {3, 2, 1, 0};
pgfImg.GetBitmap(img.bytesPerLine(), (UINT8*)img.bits(), img.depth(), map);
}
else
{
int map[] = {0, 1, 2, 3};
pgfImg.GetBitmap(img.bytesPerLine(), (UINT8*)img.bits(), img.depth(), map);
}
if (verbose)
std::cout << "PGFUtils: PGF image is decoded";
}
catch (IOException& e)
{
int err = e.error;
if (err >= AppError)
{
err -= AppError;
}
std::cout << "PGFUtils: Error running libpgf (" << err << ")!";
return false;
}
return true;
}
bool writePGFImageFile(const QImage& image,
const QString& filePath,
int quality,
bool verbose)
{
#ifdef Q_OS_WIN32
#ifdef UNICODE
HANDLE fd = CreateFile((LPCWSTR)(QFile::encodeName(filePath).constData()), GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
#else
HANDLE fd = CreateFile(QFile::encodeName(filePath).constData(), GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
#endif
if (fd == INVALID_HANDLE_VALUE)
{
qCDebug(DIGIKAM_GENERAL_LOG) << "PGFUtils: Error: Could not open destination file.";
return false;
}
#elif defined(__POSIX__)
int fd = QT_OPEN(QFile::encodeName(filePath).constData(),
O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
if (fd == -1)
{
std::cout << "PGFUtils: Error: Could not open destination file.";
return false;
}
#endif
CPGFFileStream stream(fd);
UINT32 nWrittenBytes = 0;
bool ret = writePGFImageDataToStream(image, stream, quality, nWrittenBytes, verbose);
if (!nWrittenBytes)
{
std::cout << "PGFUtils: Written PGF file : data size is null";
ret = false;
}
else
{
if (verbose)
std::cout << "PGFUtils: file size written : " << nWrittenBytes;
}
#ifdef Q_OS_WIN32
CloseHandle(fd);
#else
close(fd);
#endif
return ret;
}
bool writePGFImageData(const QImage& image, QByteArray& data, int quality, bool verbose)
{
try
{
// We will use uncompressed image bytes size to allocate PGF stream in memory. In all case, due to PGF compression ratio,
// PGF data will be so far lesser than image raw size.
#if (QT_VERSION >= QT_VERSION_CHECK(5, 10, 0))
int rawSize = image.sizeInBytes();
#else
int rawSize = image.byteCount();
#endif
CPGFMemoryStream stream(rawSize);
if (verbose)
std::cout << "PGFUtils: PGF stream memory allocation in bytes: " << rawSize;
UINT32 nWrittenBytes = 0;
bool ret = writePGFImageDataToStream(image, stream, quality, nWrittenBytes, verbose);
int pgfsize =
#ifdef PGFCodecVersionID
# if PGFCodecVersionID == 0x061224
// Wrap around libpgf 6.12.24 about CPGFMemoryStream bytes size generated to make PGF file data.
// It miss 16 bytes at end. This solution fix the problem. Problem have been fixed in 6.12.27.
nWrittenBytes + 16;
# else
nWrittenBytes;
# endif
#else
nWrittenBytes;
#endif
data = QByteArray((const char*)stream.GetBuffer(), pgfsize);
if (!pgfsize)
{
std::cout << "PGFUtils: Encoded PGF image : data size is null";
ret = false;
}
else
{
if (verbose)
std::cout << "PGFUtils: data size written : " << pgfsize;
}
return ret;
}
catch (IOException& e)
{
int err = e.error;
if (err >= AppError)
{
err -= AppError;
}
std::cout << "PGFUtils: Error running libpgf (" << err << ")!";
return false;
}
}
bool writePGFImageDataToStream(const QImage& image,
CPGFStream& stream,
int quality,
UINT32& nWrittenBytes,
bool verbose)
{
try
{
if (image.isNull())
{
std::cout << "PGFUtils: Thumb image is null";
return false;
}
QImage img;
// Convert image with Alpha channel.
if (image.format() != QImage::Format_ARGB32)
{
img = image.convertToFormat(QImage::Format_ARGB32);
if (verbose)
std::cout << "PGFUtils: RGB => ARGB";
}
else
{
img = image;
}
CPGFImage pgfImg;
PGFHeader header;
header.width = img.width();
header.height = img.height();
header.nLevels = 0; // Auto.
header.quality = quality;
header.bpp = img.depth();
header.channels = 4;
header.mode = ImageModeRGBA;
header.usedBitsPerChannel = 0; // Auto
#ifdef PGFCodecVersionID
# if PGFCodecVersionID < 0x061142
header.background.rgbtBlue = 0;
header.background.rgbtGreen = 0;
header.background.rgbtRed = 0;
# endif
#endif
pgfImg.SetHeader(header);
// NOTE: see bug #273765 : Loading PGF thumbs with OpenMP support through a separated thread do not work properly with libppgf 6.11.24
pgfImg.ConfigureEncoder(false);
if (verbose)
{
std::cout << "PGFUtils: PGF image settings:";
std::cout << "PGFUtils: width: " << header.width;
std::cout << "PGFUtils: height: " << header.height;
std::cout << "PGFUtils: nLevels: " << header.nLevels;
std::cout << "PGFUtils: quality: " << header.quality;
std::cout << "PGFUtils: bpp: " << header.bpp;
std::cout << "PGFUtils: channels: " << header.channels;
std::cout << "PGFUtils: mode: " << header.mode;
std::cout << "PGFUtils: usedBitsPerChannel: " << header.usedBitsPerChannel;
}
if (QSysInfo::ByteOrder == QSysInfo::BigEndian)
{
int map[] = {3, 2, 1, 0};
pgfImg.ImportBitmap(img.bytesPerLine(), (UINT8*)img.bits(), img.depth(), map);
}
else
{
int map[] = {0, 1, 2, 3};
pgfImg.ImportBitmap(img.bytesPerLine(), (UINT8*)img.bits(), img.depth(), map);
}
nWrittenBytes = 0;
#ifdef PGFCodecVersionID
# if PGFCodecVersionID >= 0x061124
pgfImg.Write(&stream, &nWrittenBytes);
# else
pgfImg.Write(&stream, 0, 0, &nWrittenBytes);
# endif
#else
pgfImg.Write(&stream, 0, 0, &nWrittenBytes);
#endif
}
catch (IOException& e)
{
int err = e.error;
if (err >= AppError)
{
err -= AppError;
}
std::cout << "PGFUtils: Error running libpgf (" << err << ")!";
return false;
}
return true;
}
bool loadPGFScaled(QImage& img, const QString& path, int maximumSize)
{
FILE* const file = fopen(QFile::encodeName(path).constData(), "rb");
if (!file)
{
std::cout << "PGFUtils: Error: Could not open source file.";
return false;
}
unsigned char header[3];
if (fread(&header, 3, 1, file) != 1)
{
fclose(file);
return false;
}
unsigned char pgfID[3] = { 0x50, 0x47, 0x46 };
if (memcmp(&header[0], &pgfID, 3) != 0)
{
// not a PGF file
fclose(file);
return false;
}
fclose(file);
// -------------------------------------------------------------------
// Initialize PGF API.
#ifdef Q_OS_WIN32
#ifdef UNICODE
HANDLE fd = CreateFile((LPCWSTR)(QFile::encodeName(path).constData()), GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
#else
HANDLE fd = CreateFile(QFile::encodeName(path).constData(), GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
#endif
if (fd == INVALID_HANDLE_VALUE)
{
return false;
}
#else
int fd = QT_OPEN(QFile::encodeName(path).constData(), O_RDONLY);
if (fd == -1)
{
return false;
}
#endif
try
{
CPGFFileStream stream(fd);
CPGFImage pgf;
pgf.Open(&stream);
// Try to find the right PGF level to get reduced image accordingly
// with preview size wanted.
int i = 0;
if (pgf.Levels() > 0)
{
for (i = pgf.Levels()-1 ; i >= 0 ; --i)
{
if (qMin((int)pgf.Width(i), (int)pgf.Height(i)) >= maximumSize)
{
break;
}
}
}
if (i < 0)
{
i = 0;
}
pgf.Read(i); // Read PGF image at reduced level i.
img = QImage(pgf.Width(i), pgf.Height(i), QImage::Format_RGB32);
if (QSysInfo::ByteOrder == QSysInfo::BigEndian)
{
int map[] = {3, 2, 1, 0};
pgf.GetBitmap(img.bytesPerLine(), (UINT8*)img.bits(), img.depth(), map);
}
else
{
int map[] = {0, 1, 2, 3};
pgf.GetBitmap(img.bytesPerLine(), (UINT8*)img.bits(), img.depth(), map);
}
}
catch (IOException& e)
{
int err = e.error;
if (err >= AppError)
{
err -= AppError;
}
std::cerr << "PGFUtils: Error running libpgf (" << err << ")!";
return false;
}
return true;
}
QString libPGFVersion()
{
return (QLatin1String(PGFCodecVersion));
}

@ -0,0 +1,75 @@
/* ============================================================
*
* This file is a part of digiKam project
* https://www.digikam.org
*
* Date : 2009-05-29
* Description : static helper methods for PGF image format.
*
* Copyright (C) 2009-2019 by Gilles Caulier <caulier dot gilles at gmail dot com>
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software Foundation;
* either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ============================================================ */
#pragma once
// Qt includes
#include <QString>
#include <QImage>
#include <QByteArray>
/**
* PGF image data to QImage using memory stream.
* NOTE: Only use this method to manage PGF thumbnails stored in database.
*/
bool readPGFImageData(const QByteArray& data,
QImage& img,
bool verbose=false);
/**
* QImage to PGF image data using memory stream. 'quality' argument set compression ratio:
* 0 => lossless compression, as PNG.
* 1 => Not loss less compression, wavelets based...
* 2 => ...
* 3 => ...
* 4 => Same compression ratio near than JPEG quality=85.
* Image quality is valid for thumbnails.
* >= 5 => provide artifacts due to down-sampling. Do not use it...
* NOTE: Only use this method to manage PGF thumbnails stored in database.
*/
bool writePGFImageData(const QImage& image,
QByteArray& data,
int quality,
bool verbose=false);
/**
* QImage to PGF image data using file stream.
* Same arguments than writePGFImageData() excepted 'filePath'
* which is PGF target file path.
*/
bool writePGFImageFile(const QImage& image,
const QString& filePath,
int quality,
bool verbose=false);
/**
* Load a reduced version of PGF file
*/
bool loadPGFScaled(QImage& img,
const QString& path,
int maximumSize);
/**
* Return a libpgf version string
*/
QString libPGFVersion();
Loading…
Cancel
Save