You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

830 lines
24 KiB

/*
* The Progressive Graphics File; http://www.libpgf.org
*
* $Date: 2007-02-03 13:04:21 +0100 (Sa, 03 Feb 2007) $
* $Revision: 280 $
*
* This file Copyright (C) 2006 xeraina GmbH, Switzerland
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
//////////////////////////////////////////////////////////////////////
/// @file Encoder.cpp
/// @brief PGF encoder class implementation
/// @author C. Stamm, R. Spuler
#include "Encoder.h"
#ifdef TRACE
#include <stdio.h>
#endif
//////////////////////////////////////////////////////
// PGF: file structure
//
// PGFPreHeader PGFHeader [PGFPostHeader] LevelLengths Level_n-1 Level_n-2 ... Level_0
// PGFPostHeader ::= [ColorTable] [UserData]
// LevelLengths ::= UINT32[nLevels]
//////////////////////////////////////////////////////
// Encoding scheme
// input: wavelet coefficients stored in subbands
// output: binary file
//
// subband
// |
// m_value [BufferSize]
// | | |
// m_sign sigBits refBits [BufferSize, BufferLen, BufferLen]
// | | |
// m_codeBuffer (for each plane: RLcodeLength (16 bit), RLcoded sigBits + m_sign, refBits)
// |
// file (for each buffer: packedLength (16 bit), packed bits)
//
// Constants
#define CodeBufferBitLen (CodeBufferLen*WordWidth) ///< max number of bits in m_codeBuffer
#define MaxCodeLen ((1 << RLblockSizeLen) - 1) ///< max length of RL encoded block
//////////////////////////////////////////////////////
/// Write pre-header, header, postHeader, and levelLength.
/// It might throw an IOException.
/// @param stream A PGF stream
/// @param preHeader A already filled in PGF pre-header
/// @param header An already filled in PGF header
/// @param postHeader [in] An already filled in PGF post-header (containing color table, user data, ...)
/// @param userDataPos [out] File position of user data
/// @param useOMP If true, then the encoder will use multi-threading based on openMP
CEncoder::CEncoder(CPGFStream* stream, PGFPreHeader preHeader, PGFHeader header, const PGFPostHeader& postHeader, UINT64& userDataPos, bool useOMP)
: m_stream(stream)
, m_bufferStartPos(0)
, m_currLevelIndex(0)
, m_nLevels(header.nLevels)
, m_favorSpeed(false)
, m_forceWriting(false)
#ifdef __PGFROISUPPORT__
, m_roi(false)
#endif
{
ASSERT(m_stream);
int count;
m_lastMacroBlock = 0;
m_levelLength = nullptr;
// set number of threads
#ifdef LIBPGF_USE_OPENMP
m_macroBlockLen = omp_get_num_procs();
#else
m_macroBlockLen = 1;
#endif
if (useOMP && m_macroBlockLen > 1) {
#ifdef LIBPGF_USE_OPENMP
omp_set_num_threads(m_macroBlockLen);
#endif
// create macro block array
m_macroBlocks = new(std::nothrow) CMacroBlock*[m_macroBlockLen];
if (!m_macroBlocks) ReturnWithError(InsufficientMemory);
for (int i=0; i < m_macroBlockLen; i++) m_macroBlocks[i] = new CMacroBlock(this);
m_currentBlock = m_macroBlocks[m_lastMacroBlock++];
} else {
m_macroBlocks = 0;
m_macroBlockLen = 1;
m_currentBlock = new CMacroBlock(this);
}
// save file position
m_startPosition = m_stream->GetPos();
// write preHeader
preHeader.hSize = __VAL(preHeader.hSize);
count = PreHeaderSize;
m_stream->Write(&count, &preHeader);
// write file header
header.height = __VAL(header.height);
header.width = __VAL(header.width);
count = HeaderSize;
m_stream->Write(&count, &header);
// write postHeader
if (header.mode == ImageModeIndexedColor) {
// write color table
count = ColorTableSize;
m_stream->Write(&count, (void *)postHeader.clut);
}
// save user data file position
userDataPos = m_stream->GetPos();
if (postHeader.userDataLen) {
if (postHeader.userData) {
// write user data
count = postHeader.userDataLen;
m_stream->Write(&count, postHeader.userData);
} else {
m_stream->SetPos(FSFromCurrent, count);
}
}
// save level length file position
m_levelLengthPos = m_stream->GetPos();
}
//////////////////////////////////////////////////////
// Destructor
CEncoder::~CEncoder() {
if (m_macroBlocks) {
for (int i=0; i < m_macroBlockLen; i++) delete m_macroBlocks[i];
delete[] m_macroBlocks;
} else {
delete m_currentBlock;
}
}
/////////////////////////////////////////////////////////////////////
/// Increase post-header size and write new size into stream.
/// @param preHeader An already filled in PGF pre-header
/// It might throw an IOException.
void CEncoder::UpdatePostHeaderSize(PGFPreHeader preHeader) {
UINT64 curPos = m_stream->GetPos(); // end of user data
int count = PreHeaderSize;
// write preHeader
SetStreamPosToStart();
preHeader.hSize = __VAL(preHeader.hSize);
m_stream->Write(&count, &preHeader);
m_stream->SetPos(FSFromStart, curPos);
}
/////////////////////////////////////////////////////////////////////
/// Create level length data structure and write a place holder into stream.
/// It might throw an IOException.
/// @param levelLength A reference to an integer array, large enough to save the relative file positions of all PGF levels
/// @return number of bytes written into stream
UINT32 CEncoder::WriteLevelLength(UINT32*& levelLength) {
// renew levelLength
delete[] levelLength;
levelLength = new(std::nothrow) UINT32[m_nLevels];
if (!levelLength) ReturnWithError(InsufficientMemory);
for (UINT8 l = 0; l < m_nLevels; l++) levelLength[l] = 0;
m_levelLength = levelLength;
// save level length file position
m_levelLengthPos = m_stream->GetPos();
// write dummy levelLength
int count = m_nLevels*WordBytes;
m_stream->Write(&count, m_levelLength);
// save current file position
SetBufferStartPos();
return count;
}
//////////////////////////////////////////////////////
/// Write new levelLength into stream.
/// It might throw an IOException.
/// @return Written image bytes.
UINT32 CEncoder::UpdateLevelLength() {
UINT64 curPos = m_stream->GetPos(); // end of image
// set file pos to levelLength
m_stream->SetPos(FSFromStart, m_levelLengthPos);
if (m_levelLength) {
#ifdef PGF_USE_BIG_ENDIAN
UINT32 levelLength;
int count = WordBytes;
for (int i=0; i < m_currLevelIndex; i++) {
levelLength = __VAL(UINT32(m_levelLength[i]));
m_stream->Write(&count, &levelLength);
}
#else
int count = m_currLevelIndex*WordBytes;
m_stream->Write(&count, m_levelLength);
#endif //PGF_USE_BIG_ENDIAN
} else {
int count = m_currLevelIndex*WordBytes;
m_stream->SetPos(FSFromCurrent, count);
}
// begin of image
UINT32 retValue = UINT32(curPos - m_stream->GetPos());
// restore file position
m_stream->SetPos(FSFromStart, curPos);
return retValue;
}
/////////////////////////////////////////////////////////////////////
/// Partitions a rectangular region of a given subband.
/// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize.
/// Write wavelet coefficients from subband into the input buffer of a macro block.
/// It might throw an IOException.
/// @param band A subband
/// @param width The width of the rectangle
/// @param height The height of the rectangle
/// @param startPos The absolute subband position of the top left corner of the rectangular region
/// @param pitch The number of bytes in row of the subband
void CEncoder::Partition(CSubband* band, int width, int height, int startPos, int pitch) {
ASSERT(band);
const div_t hh = div(height, LinBlockSize);
const div_t ww = div(width, LinBlockSize);
const int ws = pitch - LinBlockSize;
const int wr = pitch - ww.rem;
int pos, base = startPos, base2;
// main height
for (int i=0; i < hh.quot; i++) {
// main width
base2 = base;
for (int j=0; j < ww.quot; j++) {
pos = base2;
for (int y=0; y < LinBlockSize; y++) {
for (int x=0; x < LinBlockSize; x++) {
WriteValue(band, pos);
pos++;
}
pos += ws;
}
base2 += LinBlockSize;
}
// rest of width
pos = base2;
for (int y=0; y < LinBlockSize; y++) {
for (int x=0; x < ww.rem; x++) {
WriteValue(band, pos);
pos++;
}
pos += wr;
base += pitch;
}
}
// main width
base2 = base;
for (int j=0; j < ww.quot; j++) {
// rest of height
pos = base2;
for (int y=0; y < hh.rem; y++) {
for (int x=0; x < LinBlockSize; x++) {
WriteValue(band, pos);
pos++;
}
pos += ws;
}
base2 += LinBlockSize;
}
// rest of height
pos = base2;
for (int y=0; y < hh.rem; y++) {
// rest of width
for (int x=0; x < ww.rem; x++) {
WriteValue(band, pos);
pos++;
}
pos += wr;
}
}
//////////////////////////////////////////////////////
/// Pad buffer with zeros and encode buffer.
/// It might throw an IOException.
void CEncoder::Flush() {
if (m_currentBlock->m_valuePos > 0) {
// pad buffer with zeros
memset(&(m_currentBlock->m_value[m_currentBlock->m_valuePos]), 0, (BufferSize - m_currentBlock->m_valuePos)*DataTSize);
m_currentBlock->m_valuePos = BufferSize;
// encode buffer
m_forceWriting = true; // makes sure that the following EncodeBuffer is really written into the stream
EncodeBuffer(ROIBlockHeader(m_currentBlock->m_valuePos, true));
}
}
/////////////////////////////////////////////////////////////////////
// Stores band value from given position bandPos into buffer m_value at position m_valuePos
// If buffer is full encode it to file
// It might throw an IOException.
void CEncoder::WriteValue(CSubband* band, int bandPos) {
if (m_currentBlock->m_valuePos == BufferSize) {
EncodeBuffer(ROIBlockHeader(BufferSize, false));
}
DataT val = m_currentBlock->m_value[m_currentBlock->m_valuePos++] = band->GetData(bandPos);
UINT32 v = abs(val);
if (v > m_currentBlock->m_maxAbsValue) m_currentBlock->m_maxAbsValue = v;
}
/////////////////////////////////////////////////////////////////////
// Encode buffer and write data into stream.
// h contains buffer size and flag indicating end of tile.
// Encoding scheme: <wordLen>(16 bits) [ ROI ] data
// ROI ::= <bufferSize>(15 bits) <eofTile>(1 bit)
// It might throw an IOException.
void CEncoder::EncodeBuffer(ROIBlockHeader h) {
ASSERT(m_currentBlock);
#ifdef __PGFROISUPPORT__
ASSERT(m_roi && h.rbh.bufferSize <= BufferSize || h.rbh.bufferSize == BufferSize);
#else
ASSERT(h.rbh.bufferSize == BufferSize);
#endif
m_currentBlock->m_header = h;
// macro block management
if (m_macroBlockLen == 1) {
m_currentBlock->BitplaneEncode();
WriteMacroBlock(m_currentBlock);
} else {
// save last level index
int lastLevelIndex = m_currentBlock->m_lastLevelIndex;
if (m_forceWriting || m_lastMacroBlock == m_macroBlockLen) {
// encode macro blocks
/*
volatile OSError error = NoError;
#ifdef LIBPGF_USE_OPENMP
#pragma omp parallel for ordered default(shared)
#endif
for (int i=0; i < m_lastMacroBlock; i++) {
if (error == NoError) {
m_macroBlocks[i]->BitplaneEncode();
#ifdef LIBPGF_USE_OPENMP
#pragma omp ordered
#endif
{
try {
WriteMacroBlock(m_macroBlocks[i]);
} catch (IOException& e) {
error = e.error;
}
delete m_macroBlocks[i]; m_macroBlocks[i] = 0;
}
}
}
if (error != NoError) ReturnWithError(error);
*/
#ifdef LIBPGF_USE_OPENMP
#pragma omp parallel for default(shared) //no declared exceptions in next block
#endif
for (int i=0; i < m_lastMacroBlock; i++) {
m_macroBlocks[i]->BitplaneEncode();
}
for (int i=0; i < m_lastMacroBlock; i++) {
WriteMacroBlock(m_macroBlocks[i]);
}
// prepare for next round
m_forceWriting = false;
m_lastMacroBlock = 0;
}
// re-initialize macro block
m_currentBlock = m_macroBlocks[m_lastMacroBlock++];
m_currentBlock->Init(lastLevelIndex);
}
}
/////////////////////////////////////////////////////////////////////
// Write encoded macro block into stream.
// It might throw an IOException.
void CEncoder::WriteMacroBlock(CMacroBlock* block) {
ASSERT(block);
#ifdef __PGFROISUPPORT__
ROIBlockHeader h = block->m_header;
#endif
UINT16 wordLen = UINT16(NumberOfWords(block->m_codePos)); ASSERT(wordLen <= CodeBufferLen);
int count = sizeof(UINT16);
#ifdef TRACE
//UINT32 filePos = (UINT32)m_stream->GetPos();
//printf("EncodeBuffer: %d\n", filePos);
#endif
#ifdef PGF_USE_BIG_ENDIAN
// write wordLen
UINT16 wl = __VAL(wordLen);
m_stream->Write(&count, &wl); ASSERT(count == sizeof(UINT16));
#ifdef __PGFROISUPPORT__
// write ROIBlockHeader
if (m_roi) {
count = sizeof(ROIBlockHeader);
h.val = __VAL(h.val);
m_stream->Write(&count, &h.val); ASSERT(count == sizeof(ROIBlockHeader));
}
#endif // __PGFROISUPPORT__
// convert data
for (int i=0; i < wordLen; i++) {
block->m_codeBuffer[i] = __VAL(block->m_codeBuffer[i]);
}
#else
// write wordLen
m_stream->Write(&count, &wordLen); ASSERT(count == sizeof(UINT16));
#ifdef __PGFROISUPPORT__
// write ROIBlockHeader
if (m_roi) {
count = sizeof(ROIBlockHeader);
m_stream->Write(&count, &h.val); ASSERT(count == sizeof(ROIBlockHeader));
}
#endif // __PGFROISUPPORT__
#endif // PGF_USE_BIG_ENDIAN
// write encoded data into stream
count = wordLen*WordBytes;
m_stream->Write(&count, block->m_codeBuffer);
// store levelLength
if (m_levelLength) {
// store level length
// EncodeBuffer has been called after m_lastLevelIndex has been updated
ASSERT(m_currLevelIndex < m_nLevels);
m_levelLength[m_currLevelIndex] += (UINT32)ComputeBufferLength();
m_currLevelIndex = block->m_lastLevelIndex + 1;
}
// prepare for next buffer
SetBufferStartPos();
// reset values
block->m_valuePos = 0;
block->m_maxAbsValue = 0;
}
////////////////////////////////////////////////////////
// Encode buffer of given size using bit plane coding.
// A buffer contains bufferLen UINT32 values, thus, bufferSize bits per bit plane.
// Following coding scheme is used:
// Buffer ::= <nPlanes>(5 bits) foreach(plane i): Plane[i]
// Plane[i] ::= [ Sig1 | Sig2 ] [DWORD alignment] refBits
// Sig1 ::= 1 <codeLen>(15 bits) codedSigAndSignBits
// Sig2 ::= 0 <sigLen>(15 bits) [Sign1 | Sign2 ] [DWORD alignment] sigBits
// Sign1 ::= 1 <codeLen>(15 bits) codedSignBits
// Sign2 ::= 0 <signLen>(15 bits) [DWORD alignment] signBits
void CEncoder::CMacroBlock::BitplaneEncode() {
UINT8 nPlanes;
UINT32 sigLen, codeLen = 0, wordPos, refLen, signLen;
UINT32 sigBits[BufferLen] = { 0 };
UINT32 refBits[BufferLen] = { 0 };
UINT32 signBits[BufferLen] = { 0 };
UINT32 planeMask;
UINT32 bufferSize = m_header.rbh.bufferSize; ASSERT(bufferSize <= BufferSize);
bool useRL;
#ifdef TRACE
//printf("which thread: %d\n", omp_get_thread_num());
#endif
// clear significance vector
for (UINT32 k=0; k < bufferSize; k++) {
m_sigFlagVector[k] = false;
}
m_sigFlagVector[bufferSize] = true; // sentinel
// clear output buffer
for (UINT32 k=0; k < bufferSize; k++) {
m_codeBuffer[k] = 0;
}
m_codePos = 0;
// compute number of bit planes and split buffer into separate bit planes
nPlanes = NumberOfBitplanes();
// write number of bit planes to m_codeBuffer
// <nPlanes>
SetValueBlock(m_codeBuffer, 0, nPlanes, MaxBitPlanesLog);
m_codePos += MaxBitPlanesLog;
// loop through all bit planes
if (nPlanes == 0) nPlanes = MaxBitPlanes + 1;
planeMask = 1 << (nPlanes - 1);
for (int plane = nPlanes - 1; plane >= 0; plane--) {
// clear significant bitset
for (UINT32 k=0; k < BufferLen; k++) {
sigBits[k] = 0;
}
// split bitplane in significant bitset and refinement bitset
sigLen = DecomposeBitplane(bufferSize, planeMask, m_codePos + RLblockSizeLen + 1, sigBits, refBits, signBits, signLen, codeLen);
if (sigLen > 0 && codeLen <= MaxCodeLen && codeLen < AlignWordPos(sigLen) + AlignWordPos(signLen) + 2*RLblockSizeLen) {
// set RL code bit
// <1><codeLen>
SetBit(m_codeBuffer, m_codePos++);
// write length codeLen to m_codeBuffer
SetValueBlock(m_codeBuffer, m_codePos, codeLen, RLblockSizeLen);
m_codePos += RLblockSizeLen + codeLen;
} else {
#ifdef TRACE
//printf("new\n");
//for (UINT32 i=0; i < bufferSize; i++) {
// printf("%s", (GetBit(sigBits, i)) ? "1" : "_");
// if (i%120 == 119) printf("\n");
//}
//printf("\n");
#endif // TRACE
// run-length coding wasn't efficient enough
// we don't use RL coding for sigBits
// <0><sigLen>
ClearBit(m_codeBuffer, m_codePos++);
// write length sigLen to m_codeBuffer
ASSERT(sigLen <= MaxCodeLen);
SetValueBlock(m_codeBuffer, m_codePos, sigLen, RLblockSizeLen);
m_codePos += RLblockSizeLen;
if (m_encoder->m_favorSpeed || signLen == 0) {
useRL = false;
} else {
// overwrite m_codeBuffer
useRL = true;
// run-length encode m_sign and append them to the m_codeBuffer
codeLen = RLESigns(m_codePos + RLblockSizeLen + 1, signBits, signLen);
}
if (useRL && codeLen <= MaxCodeLen && codeLen < signLen) {
// RL encoding of m_sign was efficient
// <1><codeLen><codedSignBits>_
// write RL code bit
SetBit(m_codeBuffer, m_codePos++);
// write codeLen to m_codeBuffer
SetValueBlock(m_codeBuffer, m_codePos, codeLen, RLblockSizeLen);
// compute position of sigBits
wordPos = NumberOfWords(m_codePos + RLblockSizeLen + codeLen);
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
} else {
// RL encoding of signBits wasn't efficient
// <0><signLen>_<signBits>_
// clear RL code bit
ClearBit(m_codeBuffer, m_codePos++);
// write signLen to m_codeBuffer
ASSERT(signLen <= MaxCodeLen);
SetValueBlock(m_codeBuffer, m_codePos, signLen, RLblockSizeLen);
// write signBits to m_codeBuffer
wordPos = NumberOfWords(m_codePos + RLblockSizeLen);
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
codeLen = NumberOfWords(signLen);
for (UINT32 k=0; k < codeLen; k++) {
m_codeBuffer[wordPos++] = signBits[k];
}
}
// write sigBits
// <sigBits>_
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
refLen = NumberOfWords(sigLen);
for (UINT32 k=0; k < refLen; k++) {
m_codeBuffer[wordPos++] = sigBits[k];
}
m_codePos = wordPos << WordWidthLog;
}
// append refinement bitset (aligned to word boundary)
// _<refBits>
wordPos = NumberOfWords(m_codePos);
ASSERT(0 <= wordPos && wordPos < CodeBufferLen);
refLen = NumberOfWords(bufferSize - sigLen);
for (UINT32 k=0; k < refLen; k++) {
m_codeBuffer[wordPos++] = refBits[k];
}
m_codePos = wordPos << WordWidthLog;
planeMask >>= 1;
}
ASSERT(0 <= m_codePos && m_codePos <= CodeBufferBitLen);
}
//////////////////////////////////////////////////////////
// Split bitplane of length bufferSize into significant and refinement bitset
// returns length [bits] of significant bits
// input: bufferSize, planeMask, codePos
// output: sigBits, refBits, signBits, signLen [bits], codeLen [bits]
// RLE
// - Encode run of 2^k zeros by a single 0.
// - Encode run of count 0's followed by a 1 with codeword: 1<count>x
// - x is 0: if a positive sign is stored, otherwise 1
// - Store each bit in m_codeBuffer[codePos] and increment codePos.
UINT32 CEncoder::CMacroBlock::DecomposeBitplane(UINT32 bufferSize, UINT32 planeMask, UINT32 codePos, UINT32* sigBits, UINT32* refBits, UINT32* signBits, UINT32& signLen, UINT32& codeLen) {
ASSERT(sigBits);
ASSERT(refBits);
ASSERT(signBits);
ASSERT(codePos < CodeBufferBitLen);
UINT32 sigPos = 0;
UINT32 valuePos = 0, valueEnd;
UINT32 refPos = 0;
// set output value
signLen = 0;
// prepare RLE of Sigs and Signs
const UINT32 outStartPos = codePos;
UINT32 k = 3;
UINT32 runlen = 1 << k; // = 2^k
UINT32 count = 0;
while (valuePos < bufferSize) {
// search next 1 in m_sigFlagVector using searching with sentinel
valueEnd = valuePos;
while(!m_sigFlagVector[valueEnd]) { valueEnd++; }
// search 1's in m_value[plane][valuePos..valueEnd)
// these 1's are significant bits
while (valuePos < valueEnd) {
if (GetBitAtPos(valuePos, planeMask)) {
// RLE encoding
// encode run of count 0's followed by a 1
// with codeword: 1<count>(signBits[signPos])
SetBit(m_codeBuffer, codePos++);
if (k > 0) {
SetValueBlock(m_codeBuffer, codePos, count, k);
codePos += k;
// adapt k (half the zero run-length)
k--;
runlen >>= 1;
}
// copy and write sign bit
if (m_value[valuePos] < 0) {
SetBit(signBits, signLen++);
SetBit(m_codeBuffer, codePos++);
} else {
ClearBit(signBits, signLen++);
ClearBit(m_codeBuffer, codePos++);
}
// write a 1 to sigBits
SetBit(sigBits, sigPos++);
// update m_sigFlagVector
m_sigFlagVector[valuePos] = true;
// prepare for next run
count = 0;
} else {
// RLE encoding
count++;
if (count == runlen) {
// encode run of 2^k zeros by a single 0
ClearBit(m_codeBuffer, codePos++);
// adapt k (double the zero run-length)
if (k < WordWidth) {
k++;
runlen <<= 1;
}
// prepare for next run
count = 0;
}
// write 0 to sigBits
sigPos++;
}
valuePos++;
}
// refinement bit
if (valuePos < bufferSize) {
// write one refinement bit
if (GetBitAtPos(valuePos++, planeMask)) {
SetBit(refBits, refPos);
} else {
ClearBit(refBits, refPos);
}
refPos++;
}
}
// RLE encoding of the rest of the plane
// encode run of count 0's followed by a 1
// with codeword: 1<count>(signBits[signPos])
SetBit(m_codeBuffer, codePos++);
if (k > 0) {
SetValueBlock(m_codeBuffer, codePos, count, k);
codePos += k;
}
// write dmmy sign bit
SetBit(m_codeBuffer, codePos++);
// write word filler zeros
ASSERT(sigPos <= bufferSize);
ASSERT(refPos <= bufferSize);
ASSERT(signLen <= bufferSize);
ASSERT(valuePos == bufferSize);
ASSERT(codePos >= outStartPos && codePos < CodeBufferBitLen);
codeLen = codePos - outStartPos;
return sigPos;
}
///////////////////////////////////////////////////////
// Compute number of bit planes needed
UINT8 CEncoder::CMacroBlock::NumberOfBitplanes() {
UINT8 cnt = 0;
// determine number of bitplanes for max value
if (m_maxAbsValue > 0) {
while (m_maxAbsValue > 0) {
m_maxAbsValue >>= 1; cnt++;
}
if (cnt == MaxBitPlanes + 1) cnt = 0;
// end cs
ASSERT(cnt <= MaxBitPlanes);
ASSERT((cnt >> MaxBitPlanesLog) == 0);
return cnt;
} else {
return 1;
}
}
//////////////////////////////////////////////////////
// Adaptive Run-Length encoder for long sequences of ones.
// Returns length of output in bits.
// - Encode run of 2^k ones by a single 1.
// - Encode run of count 1's followed by a 0 with codeword: 0<count>.
// - Store each bit in m_codeBuffer[codePos] and increment codePos.
UINT32 CEncoder::CMacroBlock::RLESigns(UINT32 codePos, UINT32* signBits, UINT32 signLen) {
ASSERT(signBits);
ASSERT(0 <= codePos && codePos < CodeBufferBitLen);
ASSERT(0 < signLen && signLen <= BufferSize);
const UINT32 outStartPos = codePos;
UINT32 k = 0;
UINT32 runlen = 1 << k; // = 2^k
UINT32 count = 0;
UINT32 signPos = 0;
while (signPos < signLen) {
// search next 0 in signBits starting at position signPos
count = SeekBit1Range(signBits, signPos, __min(runlen, signLen - signPos));
// count 1's found
if (count == runlen) {
// encode run of 2^k ones by a single 1
signPos += count;
SetBit(m_codeBuffer, codePos++);
// adapt k (double the 1's run-length)
if (k < WordWidth) {
k++;
runlen <<= 1;
}
} else {
// encode run of count 1's followed by a 0
// with codeword: 0(count)
signPos += count + 1;
ClearBit(m_codeBuffer, codePos++);
if (k > 0) {
SetValueBlock(m_codeBuffer, codePos, count, k);
codePos += k;
}
// adapt k (half the 1's run-length)
if (k > 0) {
k--;
runlen >>= 1;
}
}
}
ASSERT(signPos == signLen || signPos == signLen + 1);
ASSERT(codePos >= outStartPos && codePos < CodeBufferBitLen);
return codePos - outStartPos;
}
//////////////////////////////////////////////////////
#ifdef TRACE
void CEncoder::DumpBuffer() const {
//printf("\nDump\n");
//for (UINT32 i=0; i < BufferSize; i++) {
// printf("%d", m_value[i]);
//}
//printf("\n");
}
#endif //TRACE